Synlett 2011(20): 3018-3022  
DOI: 10.1055/s-0031-1289893
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthetic Studies toward 3-(Acylamino)-1H-indazoles and Development of a One-Pot, Microwave-Assisted, Oxadiazole Condensation/Boulton-Katritzky Rearrangement

Gregory R. Ott*, Andrew V. Anzalone
Department of Medicinal Chemistry, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA
Fax: +1(610)3440065; e-Mail: gott@cephalon.com;
Weitere Informationen

Publikationsverlauf

Received 21 September 2011
Publikationsdatum:
23. November 2011 (online)

Abstract

Studies on the Boulton-Katritzky rearrangement of 3-(2-aminoaryl)-1,2,4-oxadiazoles have led to the identification of additional electronic factors that govern the rearrangement as well as a competitive thermal rearrangement pathway for select substrates. To circumvent the limitations of the conventional thermal conversion sequence an improved protocol that employs microwave irradiation has been devised that allows access to rearrangement products in good to excellent isolated yields. Furthermore, we have developed a two-component, one-pot sequence using a microwave-assisted oxadiazole condensation/Boulton-Katritzky rearrangement to deliver 3-(acylamino)-1H-indazoles from simple esters and 2-amino-N-hydroxy-benzamidine

    References and Notes

  • 1a Katritzky AR. Pacureanu LM. Dobchev DA. Fara DC. Duchowicz PR. Karelson M. Bioorg. Med. Chem.  2006,  14:  4987 
  • 1b Aronov AM. Murcko MA. J. Med. Chem.  2004,  47:  5616 
  • 1c Witherington J. Bordas V. Gaiba A. Naylor A. Rawlings AD. Slingsby BP. Smith DG. Takle AK. Ward RW. Bioorg. Med. Chem. Lett.  2003,  13:  3059 ; and references therein
  • 1d Vadivelan S. Sinha BN. Irudayam SJ. Jagarlapudi SARP. J. Chem. Inf. Model.  2007,  47:  1526 
  • 2a Tavares FX. Deaton DN. Miller AB. Miller LR. Wright LL. Zhou H.-Q. J. Med. Chem.  2004,  47:  5049 
  • 2b Tavares FX. Boncek V. Deaton DN. Hassell AM. Long ST. Miller AB. Payne AA. Miller LR. Shewchuk LM. Wells-Knecht K. Willard DH. Wright LL. Zhou H.-Q. J. Med. Chem.  2004,  47:  588 
  • 3 Raffa D. Daidone G. Plescia F. Schillaci D. Maggio B. Torta L. Farmaco  2002,  57:  183 
  • 4 Raffa D. Daidone G. Maggio B. Schillaci D. Plescia F. Arch. Pharm. (Weinheim, Ger.)  1999,  332:  317 
  • 5 Boulton AJ. Fletcher IJ. Katritzky AR. J. Chem. Soc. C  1971,  1193 
  • 6a Vivona N. Cusmano G. Macaluso G. Frenna V. Ruccia M. J. Heterocycl. Chem.  1979,  16:  783 
  • 6b Korbonits D. Kanzel-Szoboda I. Horvath K. J. Chem. Soc., Perkin Trans. 1  1982,  759 
  • 7 Krishnamurty R. Brock AM. Maly DJ. Bioorg. Med. Chem. Lett.  2011,  21:  550 
  • 8 The structure was confirmed by independent synthesis. Coupling 6-methoxy-1H-benzoimidazol-2-ylamine with benzoic acid provided 6, spectroscopically equivalent to the material from the rearrangement (Scheme 3). For a similar procedure, see: Hasegawa M. Nishigaki N. Washio Y. Kano K. Harris PA. Sato H. Mori I. West RI. Shibahara M. Toyoda H. Wang L. Nolte RT. Veal JM. Cheung M. J. Med. Chem.  2007,  50:  4453 
  • 9 Buscemi S. Vivona N. Caronna T. J. Org. Chem.  1996,  61:  8397 
  • 12 Wang Y. Miller RL. Sauer DR. Djuric SW. Org. Lett.  2005,  7:  925 
  • 13 Adib M. Jahromi AH. Tavoosi N. Mahdavi M. Bijanzadeh HR. Synlett  2006,  1765 
10

An alternative mechanism suggested by a reviewer involves protonation of the oxadiazole which promotes the observed rearrangement as shown below (Scheme  [4] ).

11

Heating was performed in a CEM Discover® microwave for organic synthesis at 300 W for the time indicated with a ramp time of 2 min with a vertically focused IR temperature sensor.