RSS-Feed abonnieren
DOI: 10.1055/s-0031-1289900
Reactions of Nitroalkenes with Nitroalkanes or Sulfur Ylides Catalyzed by Amine-Thiourea Bifunctional Polymeric Organocatalysts
Publikationsverlauf
Publikationsdatum:
23. November 2011 (online)

Abstract
Non-cross-linked and cross-linked bifunctional polystyrenes bearing both amine and thiourea groups have been synthesized and used as organocatalysts in reactions between nitroalkenes and nitroalkanes or sulfur ylides. Control experiments using monofunctional polymers with only either amine or thiourea groups attached indicated that both functional groups were essential for efficient catalysis of the reactions studied. The non-cross-linked polystyrene was soluble in typical organic solvents and was used as a homogeneous catalyst, while the cross-linked polystyrene was used as a heterogeneous catalyst.
Key words
polymer-supported organocatalyst - polystyrene - JandaJel - nitroalkanes - nitroalkenes - sulfur ylides
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- For selected reviews regarding polymer-supported organocatalysts, see:
- 1a
Benaglia M.Puglisi A.Cozzi F. Chem. Rev. 2003, 103: 3401Reference Ris Wihthout Link - 1b
Benaglia M. New J. Chem. 2006, 30: 1525Reference Ris Wihthout Link - 1c
Cozzi F. Adv. Synth. Catal. 2006, 348: 1367Reference Ris Wihthout Link - 1d
Gruttadauria M.Giacalone F.Noto R. Chem. Soc. Rev. 2008, 37: 1666Reference Ris Wihthout Link - 1e
Kristensen TE.Hansen T. Eur. J. Org. Chem. 2010, 3179Reference Ris Wihthout Link - For selected reviews regarding bifunctional organocatalysts, see:
- 2a
Marcelli T.van Maarseveen JH.Hiemstra H. Angew. Chem. Int. Ed. 2006, 45: 7496Reference Ris Wihthout Link - 2b
Kano T.Maruoka K. Chem. Commun. 2008, 5465Reference Ris Wihthout Link - 2c
Paull DH.Abraham CJ.Scerba MT.Alden-Danforth E.Lectka T. Acc. Chem. Res. 2008, 41: 655Reference Ris Wihthout Link - 2d
Lattanzi A. Chem. Commun. 2009, 1452Reference Ris Wihthout Link - 2e
Liu X.Lin L.Feng X. Chem. Commun. 2009, 6145Reference Ris Wihthout Link - 2f
Grotjahn DB. Top. Catal. 2010, 53: 1009Reference Ris Wihthout Link - 2g
Ting A.Goss JM.McDougal NT.Schaus SE. Top. Curr. Chem. 2010, 291: 145Reference Ris Wihthout Link - 3 For a landmark example of a trifunctional
organocatalyst, see:
Ema T.Tanida D.Matsukawa T.Sakai T. Chem. Commun. 2008, 957Reference Ris Wihthout Link - 4a
Overberger CG.Salamone JC.Yaroslavsky S.
J. Am. Chem. Soc. 1967, 89: 6231Reference Ris Wihthout Link - 4b
Overberger CG.Maki H. Macromolecules 1970, 3: 220Reference Ris Wihthout Link - 4c
Overberger CG.Maki H. Macromolecules 1970, 3: 214Reference Ris Wihthout Link - 4d
Overberger CG.Pacansky TJ.Lee J.St. Pierre T.Yaroslavsky S. J. Polym. Sci., Polym. Symp. 1974, 46: 209Reference Ris Wihthout Link - 4e
Overberger CG.Podsiadly CJ. Bioorg. Chem. 1974, 3: 35Reference Ris Wihthout Link - 4f
Overberger CG.Podsiadly CJ. Bioorg. Chem. 1974, 3: 16Reference Ris Wihthout Link - 5 For conceptually similar research
using imprinted polymers, see:
Sellergren B.Karmalkar RN.Shea KJ. J. Org. Chem. 2000, 65: 4009Reference Ris Wihthout Link - 6
Lu J.Toy PH. Chem. Rev. 2009, 109: 815Reference Ris Wihthout Link - 7 For a review regarding polymer-supported
phosphines, see:
Guino M.Hii KKM. Chem. Soc. Rev. 2007, 36: 608Reference Ris Wihthout Link - For our work regarding cross-linked polymer-supported phosphines, see:
- 8a
Choi MKW.He HS.Toy PH. J. Org. Chem. 2003, 68: 9831Reference Ris Wihthout Link - 8b
Zhao LJ.He HS.Shi M.Toy PH. J. Comb. Chem. 2004, 6: 680Reference Ris Wihthout Link - 8c
Zhao L.-J.Kwong CK.-W.Shi M.Toy PH. Tetrahedron 2005, 61: 12026Reference Ris Wihthout Link - 8d
Leung PS.-W.Teng Y.Toy PH. Synlett 2010, 1997Reference Ris Wihthout Link - 8e
Teng Y.Toy PH. Synlett 2011, 551Reference Ris Wihthout Link - For our work regarding non-cross-linked polymer-supported phosphines, see:
- 9a
Harned AM.He HS.Toy PH.Flynn DL.Hanson PR. J. Am. Chem. Soc. 2005, 127: 52Reference Ris Wihthout Link - 9b
He HS.Yan JJ.Shen R.Zhuo S.Toy PH. Synlett 2006, 563Reference Ris Wihthout Link - 10
Kwong CK.-W.Huang R.Zhang M.Shi M.Toy PH. Chem. Eur. J. 2007, 13: 2369Reference Ris Wihthout Link - 11 For a review of alkyne to diene
isomerization reactions, see:
Kwong CK.-W.Fu MY.Lam CS.-L.Toy PH. Synthesis 2008, 2307Reference Ris Wihthout Link - 12a
Kwong CK.-W.Fu MY.Law HC.-H.Toy PH. Synlett 2010, 2617Reference Ris Wihthout Link - 12b
Fu MY.Guo J.Toy PH. Synlett 2011, 989Reference Ris Wihthout Link - 13a
But TYS.Tashino Y.Togo H.Toy PH. Org. Biomol. Chem. 2005, 3: 970Reference Ris Wihthout Link - 13b
Chung CWY.Toy PH. J. Comb. Chem. 2007, 9: 155Reference Ris Wihthout Link - 13c
Lu J.Toy PH. Synlett 2011, 659Reference Ris Wihthout Link - 14
Lu J.Toy PH. Synlett 2011, 1723Reference Ris Wihthout Link - 15
Leung PS.-W.Teng Y.Toy PH. Org. Lett. 2010, 12: 4996Reference Ris Wihthout Link - 16
Rabalakos C.Wulff WD. J. Am. Chem. Soc. 2008, 130: 13524Reference Ris Wihthout Link - 17a
Lu L.-Q.Cao Y.-J.Liu X.-P.An J.Yao C.-J.Ming Z.-H.Xiao W.-J. J. Am. Chem. Soc. 2008, 130: 6946Reference Ris Wihthout Link - 17b
Lu L.-Q.Li F.An J.Zhang J.-J.An X.-L.Hua Q.-L.Xiao W.-J. Angew. Chem. Int. Ed. 2009, 48: 9542Reference Ris Wihthout Link - 18 For a related bifunctional mesoporous
silica material, see:
Puglisi A.Annunziata R.Benaglia M.Cozzi F.Gervasini A.Bertacche V.Sala MC. Adv. Synth. Catal. 2009, 351: 219Reference Ris Wihthout Link - 19
Toy PH.Reger TS.Janda KD. Org. Lett. 2000, 2: 2205Reference Ris Wihthout Link - 21
Mampreian DM.Hoveyda AH. Org. Lett. 2004, 6: 2829Reference Ris Wihthout Link - For the Jandajel concept, see:
- 24a
Toy PH.Janda KD. Tetrahedron Lett. 1999, 40: 6329Reference Ris Wihthout Link - 24b
Toy PH.Reger TS.Janda KD. Aldrichimica Acta 2000, 33: 87Reference Ris Wihthout Link - 24c
Toy PH.Reger TS.Garibay P.Garno JC.Malikayil JA.Liu G.-Y.Janda KD. J. Comb. Chem. 2001, 3: 117Reference Ris Wihthout Link - 24d
Choi MKW.Toy PH. Tetrahedron 2004, 60: 2903Reference Ris Wihthout Link
References and Notes
See Supporting Information for details.
22
General Procedure
for the Michael Addition Reactions of Nitroalkanes to Nitrostyrenes
Catalyzed by Polymer 9
Nitrostyrene 13a-i (1 mmol) and catalyst 9 (0.05
mmol) were dissolved in 12 (2.6 mL, 30
mmol). The mixture was stirred at r.t. for 20 h, and then the reaction
mixture was purified directly by column chromatography to afford
the desired product14a-i as a mixture of stereoisomers. The syn/anti ratio
was determined by ¹H NMR analysis of the crude product
mixture.
General Procedure for the Cycloaddition Reactions Catalyzed by Polymer 9 Nitrostyrene 13a,c,d,f-l (0.5 mmol) and 9 (0.05 mmol) were dissolved in CHCl3 (1 mL). Sulfur ylide 15a-c (0.6 mmol) in CHCl3 (1 mL) was then added dropwise to the mixture. After stirring at r.t. for 24 h, the reaction mixture was purified directly by column chromatography to afford the desired products 16a-l. The anti/syn ratio was determined by ¹H NMR analysis of the crude product mixture.
25
General Procedure
for the Michael Addition Reactions of Nitroalkanes to Nitrostyrenes
Catalyzed by Polymer 18
To nitrostyrene 13a-i (1
mmol) in 12 (2.6 mL, 30 mmol) was added
catalyst 18 (0.1 mmol). The mixture was
stirred at r.t. for 15 h. The polymer was then removed by filtration, washed
with THF, and the filtrate was concentrated in vacuo to remove the
excess nitropropane. The syn/anti ratio was determined by ¹H
NMR analysis.
General Procedure
for the Reuse of Polymer 18
To nitrostyrene 13a (3.0 mmol) in 12 (90
mmol) was added catalyst 18 (0.3 mmol).
Cycles 3-5 were performed on a 1.5 mmol scale and cycle
6 was performed on a 1.2 mmol scale. The mixture was stirred at
r.t. for 15 h, and then the polymer was then removed by filtration,
washed with THF, and dried. The filtrate was concentrated in vacuo
to remove the excess nitropropane. The syn/anti ratio was determined by ¹H
NMR analysis to be 85:15 in all cycles.