Subscribe to RSS
DOI: 10.1055/s-0031-1290070
Exploring α-Chromonyl Nitrones as 1,5-Dipoles
Publication History
Publication Date:
03 January 2012 (online)
Abstract
N-Phenyl-C-chromonyl nitrones 1 and the allenoate zwitterion 2, generated by addition of phosphine to acetylenedicarboxylates, undergo a cascade reaction sequence involving an unprecedented [5+3] annulation followed by deoxygenative rearrangement leading to dihydropyridine-fused benzopyrones. Unusual electronic control by the N-substituents of 1 directs the annulation pathway, leading to two different ring-systems.
Keywords
nitrones - dipolar cycloadditions - acetylene carboxylates - cascade reactions - zwitterions
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Ertl P.Jelfs S.Muhlbacher J.Schuffenhauer A.Selzer P. J. Med. Chem. 2006, 49: 4568 -
1b
Breinbauer R.Vetter IR.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 2879 -
1c
Böhm H.-J.Flohr A.Stahl M. Drug Discovery Today: Technol. 2004, 1: 217 -
1d
Bemis GW.Murcko MA. J. Med. Chem. 1996, 39: 2887 -
2a
Kumar K.Waldmann H. Angew. Chem. Int. Ed. 2009, 48: 3224 -
2b
Wetzel S.Klein K.Renner S.Rauh D.Oprea TI.Mutzel P.Waldmann H. Nat. Chem. Biol. 2009, 5: 696 -
2c
Renner S.van Otterlo WAL.Seoane MD.Mocklinghoff S.Hofmann B.Wetzel S.Schuffenhauer A.Ertl P.Oprea TI.Steinhilber D.Brunsveld L.Rauh D.Waldmann H. Nat. Chem. Biol. 2009, 5: 585 -
2d
Nandy JP.Prakesch M.Khadem S.Reddy PT.Sharma U.Arya P. Chem. Rev. 2009, 109: 1999 - 3
Ganesan A. Curr. Opin. Chem. Biol. 2008, 12: 306 -
4a
Waldmann H.Khedkar V.Dückert H.Schürmann M.Oppel IM.Kumar K. Angew. Chem. Int. Ed. 2008, 47: 6869 -
4b
Dückert H.Khedkar V.Waldmann H.Kumar K. Chem. Eur. J. 2011, 17: 5130 -
4c
Baskar B.Dakas P.-Y.Kumar K. Org. Lett. 2011, 13: 1988 -
4d
Wittstein K.Kumar K.Waldmann H. Angew. Chem. Int. Ed. 2011, 50: 9076 -
4e
Waldmann H.Bruss H.Dückert H.Kumar K. Tetrahedron Lett. 2011, 52: 2265 -
5a
Ishar MPS.Singh G.Kumar K.Singh R. Tetrahedron 2000, 56: 7817 -
5b
Boruah AK.Prajapati D.Sandhu JS. J. Chem. Soc., Perkin Trans. 1 1987, 1995 -
6a
Lu X.Zhang C.Xu Z. Acc. Chem. Res. 2001, 34: 535 -
6b
Nair V.Menon RS.Sreekanth AR.Abhilash N.Biju AT. Acc. Chem. Res. 2006, 39: 520 -
6c
Methot JL.Roush WR. Adv. Synth. Catal. 2004, 346: 1035 -
7a
Dai M.Wang Z.Danishefsky SJ. Tetrahedron Lett. 2008, 49: 6613 -
7b
Lopez-Calle E.Höfler J.Eberbach W. Liebigs Ann. 1996, 1855 - For reviews on cycloaddition reactions of nitrones, see:
-
8a
Kanemase S. Heterocycles 2010, 82: 87 -
8b
Nguyen TB.Martel A.Gaulon C.Dhal R.Dujardin G. Org. Prep. Proced. Int. 2010, 42: 387 -
8c
Bokach NA. Russ. Chem. Rev. 2010, 79: 89 -
8d
Brandi A.Cardona F.Cicchi S.Cordero FM.Goti A. Chem. Eur. J. 2009, 15: 7808 -
8e
Rueck-Braun K.Freysoldt THE.Wierschem F. Chem. Soc. Rev. 2005, 34: 507 -
8f
Banerji A.Bandyopadhyay D. J. Indian Chem. Soc. 2004, 81: 817 -
8g
Merino P. Nitrones and Analogues, In Science of Synthesis George Thieme Verlag; Stuttgart: 2004. Chap. 13. p.511 -
8h
Black DStC.Crozier RF.Davis VC. Synthesis 1975, 205 -
9a
Ishar MPS.Kumar K.Singh R. Tetrahedron Lett. 1998, 39: 6547 -
9b
Ghosh T.Bandyopadhyay C. Tetrahedron Lett. 2004, 45: 6169 - 10
Kumar K.Kapoor R.Kapur A.Ishar MPS. Org. Lett. 2000, 2: 2023 - 11
González-Cruz D.Tejedor D.de Armas P.Moralesa EQ.García-Tellado F. Chem. Commun. 2006, 2798 - For deoxygenation of nitrones with phosphines and phosphites, see:
-
16a
Cividino P.Dheu-Andries M.-L.Ou J.Milet A.Py S.Toy PH. Tetrahedron Lett. 2009, 50: 7038 -
16b
Horner L.Hoffmann H. Angew. Chem. 1956, 68: 473 -
16c
Agolini F.Bonnett R. Can. J. Chem. 1962, 40: 181 -
16d
Merino P.Delso I.Tejero T.Cardona F.Marradi M.Faggi E.Parmeggiani C.Goti A. Eur. J. Org. Chem. 2008, 2929 -
16e
Milliet P.Lusinchi X. Tetrahedron 1979, 35: 43 - 17
Molnar A.Bucsi I.Bartok M. Tetrahedron 1992, 48: 4929 -
18a
Bayón P.de March P.Figueredo M.Font J.Medrano J. Tetrahedron: Asymmetry 2000, 11: 4269 -
18b
Sustmann R. Pure Appl. Chem. 1974, 40: 569 -
18c
Gilchrist TL.Storr RC. In Organic Reactions and Orbital Symmetry Cambridge University; Cambridge: 1972. p.132 -
18d
Fleming I. Frontier Orbitals and Organic Chemical Reactions Wiley; London: 1976. p.148-161 -
18e
Padwa A.Fisera L.Koehler KF.Rodriguez A.Wong GSK. J. Org. Chem. 1984, 49: 276 -
19a
Acharjee N.Banerji A. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. 2010, 49: 1444 -
19b
Gothelf KV.Hazell RG.Jørgensen KA. Acta Chem. Scand. 1997, 50: 1234 -
19c
Banerji A.Biswas PK.Gupta M.Saha R.Banerji J. J. Indian Chem. Soc. 2007, 84: 1004 -
19d
Koyano K.Suzuki H. Bull. Chem. Soc. Jpn. 1969, 42: 3306 -
19e
Koyano K.Suzuki H. Tetrahedron Lett. 1968, 9: 1859
References and Notes
Crystallographic data for 8a has been deposited at the Cambridge Crystallographic Data Centre (CCDC-848674). Copies of the data can be obtained free of charge at www.ccdc.cam.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk]
13Representative procedure for the synthesis of dihydro-pyridine fused benzopyrones 8a: To a solution of nitrone 1f-i (94 mg, 0.34 mmol) in anhydrous CH2Cl2 (10 mL) was added dimethyl acetylenedicarboxylate (83 µL, 0.67 mmol, 2 equiv), followed by triphenylphosphine (88 mg, 0.4 mmol, 1.2 equiv). The resulting mixture was stirred at r.t. for 48 h. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (EtOAc-petroleum ether, 15-18%) to give 8a (48 mg, 0.12 mmol, 36% yield) as a yellow solid
14Compound 8a: R f = 0.35 (EtOAc-petroleum ether, 40%); mp 226-236 ˚C; ¹H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 1.8 Hz, 1 H), 7.87 (d, J = 1.9 Hz, 1 H,), 7.51-7.44 (m, 2 H), 7.41-7.34 (m, 4 H), 7.21 (d, J = 8.0 Hz, 1 H), 6.10 (d, J = 1.7 Hz, 1 H), 3.87 (s, 3 H), 3.74 (s, 3 H), 2.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl3): δ = 175.54, 170.29, 164.85, 156.97, 154.45, 147.13, 143.13, 135.75, 133.75, 129.83, 127.71, 125.89, 121.47, 120.24, 117.34, 105.59, 84.38, 61.98, 53.11, 51.62, 20.64; HRMS (ESI): m/z [M + H]+ calcd for C23H20NO6: 406.12851; found: 406.12806
15Compound 8d: R f = 0.37 (EtOAc-petroleum ether, 30%); ¹H NMR (400 MHz, CDCl3): δ = 8.30 (d, J = 1.7 Hz, 1 H), 8.03 (s, 1 H), 7.48 (dd, J = 7.7 Hz, 2 H), 7.40-7.32 (m, 3 H), 7.21 (s, 1 H), 6.10 (d, J = 1.7 Hz, 1 H), 3.87 (s, 3 H), 3.74 (s, J = 5.1 Hz, 3 H), 2.45 (s, 3 H); ¹³C NMR (100 MHz, CDCl3): δ = 174.24, 170.18, 164.68, 155.54, 154.47, 147.20, 143.81, 143.09, 130.19, 129.89, 127.88, 126.06, 121.55, 119.81, 119.66, 105.13, 84.92, 62.02, 53.19, 51.71, 20.70; HRMS (ESI): m/z [M + H]+ calcd for C23H19ClNO6: 440.08954; found: 440.08909; m/z [M + H]+ calcd for C23H19Cl³7NO6: 442.08659; found: 442.08630