Synlett 2012(2): 298-300  
DOI: 10.1055/s-0031-1290116
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Highly Substituted Symmetrical 1,3-Dienes via Organocuprate Oxidation

Sarah. J. Avesa, Kieron M. G. O’Connella, Kurt G. Pikeb, David R. Spring*a
a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Fax: +44(1223)336362; e-Mail: spring@ch.cam.ac.uk;
b AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
Further Information

Publication History

Received 29 November 2011
Publication Date:
22 December 2011 (online)

Abstract

Oxidation of alkenyl organocuprates formed from alkenyl halides allows the formation of highly substituted symmetrical 1,3-dienes. Cuprates formed from organolithiums and Grignard reagents can be tolerated and the reaction proceeds with retention of alkenyl geometry.

    References and Notes

  • For applications in natural product synthesis, see:
  • 1a Nicolaou KC. Snyder SA. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed.  2002,  41:  1668 
  • 1b Nicolaou KC. Montagnon T. Snyder SA. Chem. Commun.  2003,  551 
  • 1c Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed.  2006,  45:  7134 
  • 1d Juhl M. Tanner D. Chem. Soc. Rev.  2009,  38:  2983 
  • See, for example:
  • 2a Brettle R. Dunmur DA. Hindley NJ. Marson CM. J. Chem. Soc., Chem. Commun.  1992,  411 
  • 2b Kim J.-H. Noh S. Kim K. Lim S.-T. Shin D.-M. Synth. Met.  2001,  117:  227 
  • 3a Krasovskiy A. Tishkov A. del Amo V. Mayr H. Knochel P. Angew. Chem. Int. Ed.  2006,  45:  5010 
  • 3b Sudan Maji M. Pfeifer T. Studer A. Angew. Chem. Int. Ed.  2008,  47:  9547 
  • 4a Semmelhack MF. Helquist PM. Gorzynski JD.
    J. Am. Chem. Soc.  1972,  94:  9234 
  • 4b Takagi K. Mimura H. Inokawa S. Bull. Chem. Soc. Jpn.  1984,  57:  3517 
  • 4c Sasaki K. Nakao K. Kobayashi Y. Sakai M. Uchino N. Sakakibara Y. Takagi K. Bull. Chem. Soc. Jpn.  1993,  66:  2446 
  • 4d Rodriguez JG. Diaz-Oliva C. Tetrahedron  2009,  65:  2512 
  • For recent examples, see:
  • 5a Alcaraz L. Taylor RJK. Synlett  1997,  791 
  • 5b Eddarir S. Rolando C. J. Fluorine Chem.  2004,  125:  377 
  • 5c Xu JJ. Burton DJ. J. Fluorine Chem.  2007,  128:  71 
  • 5d Batsanov AS. Knowles JP. Sansam B. Whiting A. Adv. Synth. Catal.  2008,  350:  227 
  • 6 Cahiez G. Moyeux A. Buendia JL. Duplais C. J. Am. Chem. Soc.  2007,  129:  13788 
  • For the coupling of alkenyl stannanes see, for example:
  • 7a Piers E. McEachern EJ. Romero MA. Gladstone PL. Can. J. Chem.  1997,  75:  694 
  • 7b Itoh T. Emoto S. Kondo M. Ohara H. Tanaka H. Torii S. Electrochim. Acta  1997,  42:  2133 
  • For alkenyl silanes, see:
  • 7c Nishihara Y. Ikegashira K. Toriyama F. Mori A. Hiyama T. Bull. Chem. Soc. Jpn.  2000,  73:  985 
  • 7d Itami K. Ushiogi Y. Nokami T. Ohashi Y. Yoshida JI. Org. Lett.  2004,  6:  3695 
  • 8 Vedejs E. Fang HW. J. Org. Chem.  1984,  49:  210 
  • 9 Mori S. Hirai A. Nakamura M. Nakamura E. Tetrahedron  2000,  56:  2805 
  • For recent reviews, see:
  • 10a Surry DS. Spring DR. Chem. Soc. Rev.  2006,  35:  218 
  • 10b Aves SJ. Spring DR. In The Chemistry of Organocopper Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2009.  p.585 
  • 11 van Koten G. James SL. Jastrzebski JTBH. In Comprehensive Organometallic Chemistry II   Vol. 3:  Abel EW. Stone FGA. Wilkinson G. Wardell JL. Pergamon; Oxford: 1995.  p.57 
  • 12a Surry DS. Su X. Fox DJ. Franckevicius V. Macdonald SJF. Spring DR. Angew. Chem. Int. Ed.  2005,  44:  1870 
  • 12b Surry DS. Fox DJ. Macdonald SJF. Spring DR. Chem. Commun.  2005,  2589 
  • 12c Su X. Fox DJ. Blackwell DT. Tanaka K. Spring DR. Chem. Commun.  2006,  3883 
  • 12d Su X. Surry DS. Spandl RJ. Spring DR. Org. Lett.  2008,  10:  2593 
  • 12e Su X. Thomas GL. Galloway WRJD. Surry DS. Spandl RJ. Spring DR. Synthesis  2009,  3880 
  • 14 Kalinin AV. Scherer S. Snieckus V. Angew. Chem. Int. Ed.  2003,  42:  3399 
  • 15 Chen J. Wang T. Zhao K. Tetrahedron Lett.  1994,  35:  2827 
  • 20 Ren H. Krasovskiy A. Knochel P. Org. Lett.  2004,  6:  4215 
  • For recent reviews on DOS, see:
  • 21a Galloway WRJD. Isidro-Llobet A. Spring DR. Nat. Commun.  2010,  1:  801 
  • 21b Schreiber SL. Nature (London)  2009,  457:  153 
  • 21c Nielsen E. Schreiber SL. Angew. Chem. Int. Ed.  2008,  47:  48 
  • 21d Galloway WRJD. Bender A. Welch M. Spring DR. Chem. Commun.  2009,  2446 
  • 21e Cordier C. Morton D. Murrison S. Nelson A. O’Leary-Steele C. Nat. Prod. Rep.  2008,  25:  719 
  • 21f Dow M. Fisher M. James T. Marchetti F. Nelson A. Org. Biomol. Chem.  2012, in press; DOI: 10.1039/C1OB06098H
13

Oxidant-derived by-products can be easily removed by passage through a plug of silica gel or an aqueous acid wash.

16

In Et2O the yield dropped to ca. 5%.

17

Typical Procedure for Alkenyl Halide Homocoupling: Alkenyl halide (1 equiv) was dissolved in THF (4 mL) and the mixture was cooled to -78 ˚C. t-Butyllithium (1.7 M in pentane, 2 equiv) was added dropwise and the solution was stirred at -78 ˚C for 30 min, and then allowed to warm to r.t. over 10 min. The resultant solution was transferred via cannula onto a precooled suspension of CuBr˙SMe2 (0.5 equiv) in THF (2 mL) at -78 ˚C and was stirred for 30 min. A solution of oxidant 5 (1 equiv) in THF (4 mL) was then added and the solution was stirred at -78 ˚C for 30 min and at r.t. for 1 h. The resultant solution was filtered through a plug of silica eluting with PE-Et2O (1:1) and the solvent was removed in vacuo. The residue was purified by flash column chromatography.

18

Selected data for compound 7: clear oil; R f 0.13 (PE-CH2Cl2, 5:1). IR (CDCl3): 2930, 2857, 1427, 1105, 1088, 986, 692 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.67-7.70 (m, 8 H), 7.36-7.43 (m, 12 H), 6.03 (m, 2 H), 5.57 (m, 2 H), 3.71 (t, J = 6.8 Hz, 4 H), 2.34 (app q, J = 6.8 Hz, 4 H), 1.07 (s, 18 H). ¹³C NMR (125 MHz, CDCl3): δ = 135.6 (CH), 134.0 (C), 132.2 (CH), 129.5 (CH), 128.8 (CH), 127.6 (CH), 63.7 (CH2), 36.0 (CH2), 26.8 (Me), 19.2 (C). HRMS (ESI):
m/z [M + Na]+ calcd for C40H50O2Si2Na: 641.3242; found: 641.3250.

19

Selected data for compound 6: white amorphous solid;
R f 0.08 (PE-EtOAc, 10:1). IR (CDCl3): 3063, 2927, 2861, 1464, 1426, 1390, 1363, 1103, 1037, 735, 757 cm. ¹H NMR (500 MHz, CDCl3): δ = 7.65-7.67 (m, 8 H), 7.37-7.45 (m, 12 H), 6.08 (m, 2 H), 5.81 (d, J = 2.5 Hz, 2 H), 3.56 (t,
J = 6.8 Hz, 4 H), 2.49 (app t, J = 6.8 Hz, 4 H), 1.21 (s, 18 H). ¹³C NMR (125 MHz, CDCl3): δ = 143.0 (C), 136.1 (CH), 134.2 (C), 131.6 (CH2), 129.1 (CH), 127.6 (CH), 61.3 (CH2), 40.0 (CH2), 28.6 (Me), 18.4 (C). HRMS (ESI): m/z [M + Na + 2 H]+ calcd for C40H52O2Si2Na: 643.3398; found: 643.3396.