Subscribe to RSS
DOI: 10.1055/s-0031-1290116
Synthesis of Highly Substituted Symmetrical 1,3-Dienes via Organocuprate Oxidation
Publication History
Publication Date:
22 December 2011 (online)
Abstract
Oxidation of alkenyl organocuprates formed from alkenyl halides allows the formation of highly substituted symmetrical 1,3-dienes. Cuprates formed from organolithiums and Grignard reagents can be tolerated and the reaction proceeds with retention of alkenyl geometry.
Key words
cuprates - oxidation - 1,3-diene - homocoupling - alkenyl halides
- Supporting Information for this article is available online:
- Supporting Information
- For applications in natural product synthesis, see:
-
1a
Nicolaou KC.Snyder SA.Montagnon T.Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002, 41: 1668 -
1b
Nicolaou KC.Montagnon T.Snyder SA. Chem. Commun. 2003, 551 -
1c
Nicolaou KC.Edmonds DJ.Bulger PG. Angew. Chem. Int. Ed. 2006, 45: 7134 -
1d
Juhl M.Tanner D. Chem. Soc. Rev. 2009, 38: 2983 - See, for example:
-
2a
Brettle R.Dunmur DA.Hindley NJ.Marson CM. J. Chem. Soc., Chem. Commun. 1992, 411 -
2b
Kim J.-H.Noh S.Kim K.Lim S.-T.Shin D.-M. Synth. Met. 2001, 117: 227 -
3a
Krasovskiy A.Tishkov A.del Amo V.Mayr H.Knochel P. Angew. Chem. Int. Ed. 2006, 45: 5010 -
3b
Sudan Maji M.Pfeifer T.Studer A. Angew. Chem. Int. Ed. 2008, 47: 9547 -
4a
Semmelhack MF.Helquist PM.Gorzynski JD.
J. Am. Chem. Soc. 1972, 94: 9234 -
4b
Takagi K.Mimura H.Inokawa S. Bull. Chem. Soc. Jpn. 1984, 57: 3517 -
4c
Sasaki K.Nakao K.Kobayashi Y.Sakai M.Uchino N.Sakakibara Y.Takagi K. Bull. Chem. Soc. Jpn. 1993, 66: 2446 -
4d
Rodriguez JG.Diaz-Oliva C. Tetrahedron 2009, 65: 2512 - For recent examples, see:
-
5a
Alcaraz L.Taylor RJK. Synlett 1997, 791 -
5b
Eddarir S.Rolando C. J. Fluorine Chem. 2004, 125: 377 -
5c
Xu JJ.Burton DJ. J. Fluorine Chem. 2007, 128: 71 -
5d
Batsanov AS.Knowles JP.Sansam B.Whiting A. Adv. Synth. Catal. 2008, 350: 227 - 6
Cahiez G.Moyeux A.Buendia JL.Duplais C. J. Am. Chem. Soc. 2007, 129: 13788 - For the coupling of alkenyl stannanes see, for example:
-
7a
Piers E.McEachern EJ.Romero MA.Gladstone PL. Can. J. Chem. 1997, 75: 694 -
7b
Itoh T.Emoto S.Kondo M.Ohara H.Tanaka H.Torii S. Electrochim. Acta 1997, 42: 2133 - For alkenyl silanes, see:
-
7c
Nishihara Y.Ikegashira K.Toriyama F.Mori A.Hiyama T. Bull. Chem. Soc. Jpn. 2000, 73: 985 -
7d
Itami K.Ushiogi Y.Nokami T.Ohashi Y.Yoshida JI. Org. Lett. 2004, 6: 3695 - 8
Vedejs E.Fang HW. J. Org. Chem. 1984, 49: 210 - 9
Mori S.Hirai A.Nakamura M.Nakamura E. Tetrahedron 2000, 56: 2805 - For recent reviews, see:
-
10a
Surry DS.Spring DR. Chem. Soc. Rev. 2006, 35: 218 -
10b
Aves SJ.Spring DR. In The Chemistry of Organocopper CompoundsRappoport Z.Marek I. Wiley; Chichester: 2009. p.585 - 11
van Koten G.James SL.Jastrzebski JTBH. In Comprehensive Organometallic Chemistry II Vol. 3:Abel EW.Stone FGA.Wilkinson G.Wardell JL. Pergamon; Oxford: 1995. p.57 -
12a
Surry DS.Su X.Fox DJ.Franckevicius V.Macdonald SJF.Spring DR. Angew. Chem. Int. Ed. 2005, 44: 1870 -
12b
Surry DS.Fox DJ.Macdonald SJF.Spring DR. Chem. Commun. 2005, 2589 -
12c
Su X.Fox DJ.Blackwell DT.Tanaka K.Spring DR. Chem. Commun. 2006, 3883 -
12d
Su X.Surry DS.Spandl RJ.Spring DR. Org. Lett. 2008, 10: 2593 -
12e
Su X.Thomas GL.Galloway WRJD.Surry DS.Spandl RJ.Spring DR. Synthesis 2009, 3880 - 14
Kalinin AV.Scherer S.Snieckus V. Angew. Chem. Int. Ed. 2003, 42: 3399 - 15
Chen J.Wang T.Zhao K. Tetrahedron Lett. 1994, 35: 2827 - 20
Ren H.Krasovskiy A.Knochel P. Org. Lett. 2004, 6: 4215 - For recent reviews on DOS, see:
-
21a
Galloway WRJD.Isidro-Llobet A.Spring DR. Nat. Commun. 2010, 1: 801 -
21b
Schreiber SL. Nature (London) 2009, 457: 153 -
21c
Nielsen E.Schreiber SL. Angew. Chem. Int. Ed. 2008, 47: 48 -
21d
Galloway WRJD.Bender A.Welch M.Spring DR. Chem. Commun. 2009, 2446 -
21e
Cordier C.Morton D.Murrison S.Nelson A.O’Leary-Steele C. Nat. Prod. Rep. 2008, 25: 719 -
21f
Dow M.Fisher M.James T.Marchetti F.Nelson A. Org. Biomol. Chem. 2012, in press; DOI: 10.1039/C1OB06098H
References and Notes
Oxidant-derived by-products can be easily removed by passage through a plug of silica gel or an aqueous acid wash.
16In Et2O the yield dropped to ca. 5%.
17Typical Procedure for Alkenyl Halide Homocoupling: Alkenyl halide (1 equiv) was dissolved in THF (4 mL) and the mixture was cooled to -78 ˚C. t-Butyllithium (1.7 M in pentane, 2 equiv) was added dropwise and the solution was stirred at -78 ˚C for 30 min, and then allowed to warm to r.t. over 10 min. The resultant solution was transferred via cannula onto a precooled suspension of CuBr˙SMe2 (0.5 equiv) in THF (2 mL) at -78 ˚C and was stirred for 30 min. A solution of oxidant 5 (1 equiv) in THF (4 mL) was then added and the solution was stirred at -78 ˚C for 30 min and at r.t. for 1 h. The resultant solution was filtered through a plug of silica eluting with PE-Et2O (1:1) and the solvent was removed in vacuo. The residue was purified by flash column chromatography.
18Selected data for compound 7: clear oil; R
f
0.13 (PE-CH2Cl2, 5:1).
IR (CDCl3): 2930, 2857, 1427, 1105, 1088, 986, 692 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.67-7.70
(m, 8 H), 7.36-7.43 (m, 12 H), 6.03 (m, 2 H), 5.57 (m,
2 H), 3.71 (t,
J = 6.8
Hz, 4 H), 2.34 (app q, J = 6.8
Hz, 4 H), 1.07 (s, 18 H). ¹³C NMR (125
MHz, CDCl3): δ = 135.6 (CH), 134.0
(C), 132.2 (CH), 129.5 (CH), 128.8 (CH), 127.6 (CH), 63.7 (CH2),
36.0 (CH2), 26.8 (Me), 19.2 (C). HRMS (ESI):
m/z [M + Na]+ calcd
for C40H50O2Si2Na: 641.3242;
found: 641.3250.
Selected data for compound 6: white amorphous solid;
R
f
0.08
(PE-EtOAc, 10:1). IR (CDCl3): 3063, 2927, 2861, 1464,
1426, 1390, 1363, 1103, 1037, 735, 757 cm-¹. ¹H NMR
(500 MHz, CDCl3): δ = 7.65-7.67
(m, 8 H), 7.37-7.45 (m, 12 H), 6.08 (m, 2 H), 5.81 (d, J = 2.5 Hz, 2 H), 3.56 (t,
J = 6.8 Hz, 4 H), 2.49 (app
t, J = 6.8 Hz, 4 H), 1.21 (s,
18 H). ¹³C NMR (125 MHz, CDCl3): δ = 143.0
(C), 136.1 (CH), 134.2 (C), 131.6 (CH2), 129.1 (CH),
127.6 (CH), 61.3 (CH2), 40.0 (CH2), 28.6 (Me),
18.4 (C). HRMS (ESI): m/z [M + Na + 2
H]+ calcd for C40H52O2Si2Na:
643.3398; found: 643.3396.