Synlett 2012(4): 535-540  
DOI: 10.1055/s-0031-1290345
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Regio- and Stereoselective Copper-Catalyzed Addition of Aromatic and Aliphatic Thiols to Terminal and Internal Nonactivated Alkynes

Inna G. Trostyanskaya, Irina P. Beletskaya*
Department of Chemistry, Moscow State University, Leninskie Gory, 119991 Moscow, Russia
Fax: +7(495)9393618; e-Mail: beletska@org.chem.msu.ru;
Further Information

Publication History

Received 27 October 2011
Publication Date:
10 February 2012 (online)

Abstract

The CuI-catalyzed regio- and stereoselective hydrothio­lation of terminal and internal alkynes affords (Z)-β-alkenylsulfides. The following isomerization of the Z-isomers into E-isomers catalyzed by CuI is described.

    References and Notes

  • 1 Trofimov BA. Shainyna BA. In The Chemistry of Sulfur-Containing Functional Groups   Patai S. Rappoport Z. John Wiley and Sons; Chichester: 1993.  p.659 
  • 2 Liu J. Lam JVY. Jim CKW. Ng JCY. Shi J. Su H. Yeung KF. Hong Y. Faisal M. Yu Y. Wong KS. Tang BZ. Macromolecules  2011,  44:  68 
  • 3a Sabarre A. Love J. Org. Lett.  2008,  10:  3941 
  • 3b Wenkert E. Shepard ME. Mcphail AT. J. Chem. Soc., Chem. Commun.  1986,  1390 
  • 3c Wenkert E. Fernandes JB. Michelotti EL. Swindell CS. Synthesis  1983,  701 
  • 3d Fiandanese V. Harchese G. Naso F. Ronsini L. Chem. Commun.  1982,  647 
  • 3e Venkert E. Ferreira TW. Michelotti EL. Chem. Commun.  1979,  637 
  • 3f Okamura H. Miura M. Takei H. Tetrahedron Lett.  1979,  43 
  • 4a Muraoka N. Mineno M. Itami K. Yoshida J. J. Org. Chem.  2005,  70:  6933 
  • 4b Itami K. Mineno M. Muraoka N. Yoshida J. J. Am. Chem. Soc.  2004,  126:  11778 
  • 4c Mauleon P. Nunez AA. Alonso J. Carretero JC. Chem. Eur. J.  2003,  9:  1511 
  • 4d Trost BM. Tanigawa Y. J. Am. Chem. Soc.  1979,  101:  4743 
  • 5a Singh PP. Yadav AK. Ita H. Junjappa H. J. Org. Chem.  2009,  74:  5496 
  • 5b Serra S. Fugnti C. Moro A.
    J. Org. Chem.  2001,  66:  7883 
  • 5c McDoald FE. Burova SA. Huffman LG. Synthesis  2000,  970 
  • 5d Yamazaki S. Synth. Org. Chem.  2000,  58:  50 
  • 5e Adrio J. Carretero JC. J. Am. Chem. Soc.  1999,  121:  7411 
  • 5f Bruckner R. Huisgen R. Tetrahedron Lett.  1990,  31:  2561 
  • 5g Singleton D. Church KM. J. Org. Chem.  1990,  55:  4780 
  • 5h Gupta RB. Franck RW. Onan KD. Soll CE. J. Org. Chem.  1989,  54:  1097 
  • 6a Trofimov BA. Gusarova NK. Malysheva SF. Ivanova NI. Sukhov BG. Belogorlova NA. Kuimov VA. Synthesis  2002,  2207 
  • 6b Trofimov BA. Gusarova NK. Malysheva SF. Sukhov BG. Belogorlova NA. Kuimov VA. Al’pert ML. Sulfur Lett.  2003,  26:  63 
  • 7 Chen MS. White MC. J. Am. Chem. Soc.  2004,  126:  1346 
  • 8 Fernandez F. Gomez M. Jansat S. Muller G. Martin E. Flores-Santos I. Organometallics  2005,  24:  3946 
  • 9 Trost BM. Lavoic AC. J. Am. Chem. Soc.  1983,  105:  5075 
  • 10 Miller RD. Hassing R. Tetrahedron Lett.  1985,  26:  2395 
  • 11a Hunter R. Kaschula CH. Parker IM. Caira MR. Richards P. Travis S. Taute F. Qwebani T. Bioorg. Med. Chem. Lett.  2008,  18:  5277 
  • 11b Strebhardt K. Ullrich A. Nat. Rev. Cancer  2006,  6:  321 
  • 11c Gumireddy K. Baker SJ. Cosenza SC. Premila J. Kang AD. Robell KA. Proc. Natl. Acad. Sci. U.S.A.  2005,  102:  1992 
  • 11d Muraoka N. Mineno M. Itami K. Yoshida J. J. Org. Chem.  2005,  70:  6933 
  • 11e Sharma VM. Adi Seshu KV. Sekhar VC. Madan S. Vishnu B. Babu PA. Krishna CV. Sreenu J. Krishna VR. Venkateswarlu A. Rajagopal S. Ajaykumar R. Kumar TS. Bioorg. Med. Chem. Lett.  2004,  14:  67 
  • 11f Sader HS. Johnson DM. Jones RN. Antimicrob. Agents Chemother.  2004,  48:  53 
  • 11g Johannesson P. Lindeberg G. Johansson A. Nikiforovich G. Godoll A. Synnergren B. Le Greves M. Nyberg F. Karlen A. Hallberg A. J. Med. Chem.  2002,  45:  1767 
  • 12a Beletskaya IP. Ananikov VP. Chem. Rev.  2011,  111:  1596 
  • 12b Ananikov VP. Zalesskiy SS. Beletskaya IP. Curr. Org. Chem.  2011,  8:  2 
  • 12c Bichler P. Love J. Top Organomet. Chem.  2010,  31:  39 
  • 12d Ide DM. Eastlund MP. Jupe CL. Stockland RA. Curr. Org. Chem.  2008,  1270 
  • 12e Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3392 
  • 12f Kuniyasu H. Kurosawa H. Chem. Eur. J.  2002,  8:  2661 
  • 12g Ogawa A. J. Organomet. Chem.  2000,  611:  463 
  • 12h Kondo T. Mitsudo T. Chem. Rev.  2000,  3209 
  • 12i Ogawa A. Ikeda T. Kimura K. Hirao T. J. Am. Chem. Soc.  1999,  121:  5108 
  • 12j Weiss C. Marks TJ. J. Am. Chem. Soc.  2010,  132:  10533 
  • 12k Yang J. Sabarre A. Fraser LR. Patrick BO. Love J. J. Org. Chem.  2009,  74:  182 
  • 12l Kuniyasu H. Ogawa A. Sato K.-I. Ryu I. Kambe N. Sonoda N. J. Am. Chem. Soc.  1992,  114:  5902 
  • 12m Yang Y. Rioux RM. Chem. Commun.  2011,  47:  6557 
  • 12n Ranjit S. Duan Z. Zhang P. Liu X. Org. Lett.  2010,  12:  4134 
  • 12o Corma A. Gonzalez-Arellano C. Iglesias M. Sanchez F. Appl. Catal., A  2010,  375:  49 
  • 12p Field LD. Messerle BA. Vuong KQ. Turner P. Dalton Trans.  2009,  3599 
  • 12q Shoai S. Bichler P. Kang B. Buckler H. Love JA. Organometallics  2007,  26:  5778 
  • 12r Burling S. Field LD. Messerle B. Vuong KQ. Turner P. Dalton Trans.  2003,  4181 
  • 12s Singer H. Wilkinson G. J. Chem. Soc. A  1968,  2516 
  • 13a Weiss CJ. Marks TJ. Organometallics  2010,  29:  6308 
  • 13b Weiss CJ. Marks TJ. Dalton Trans.  2010,  6576 
  • 13c Eisen NS. Top. Organomet. Chem.  2010,  31:  157 
  • 13d Weiss CJ. Wobser SD. Marks TJ. J. Am. Chem. Soc.  2009,  131:  2062 
  • 14a O’Donnal JS. Singh S. Metcalf TA. Schwan AL. Eur. Org. Chem.  2009,  547 
  • 14b Perin G. Mendes SR. Silva MS. Lenardo E. Jacob RG. Santos PC. Synth. Commun.  2006,  36:  2587 
  • 14c Kondoh A. Takami K. Yorimitsu H. Oshima K. J. Org. Chem.  2005,  70:  6468 
  • 14d Perin G. Jacob R. Azambuja F. Botteselb G. Siqueira G. Freitag R. Lenardo E. Tetrahedron Lett.  2005,  46:  1679 
  • 14e Medel R. Monterde MI. Plumet J. Rojas JK. J. Org. Chem.  2005,  70:  735 
  • 14f Arjona O. Medel R. Rojas J. Costa A. Vilarrasa J. Tetrahedron Lett.  2003,  44:  6369 
  • 14g Trofimov BA. Curr. Org. Chem.  2002,  6:  11212 
  • 14h Carson JF. Boggs LE. J. Org. Chem.  1967,  32:  673 
  • 14i Truce W. Heine R. J. Am. Chem. Soc.  1957,  79:  5311 
  • 14j Truce WE. Simms JA. J. Am. Chem. Soc.  1956,  78:  2756 
  • 15a Minozzi M. Monesi A. Nanni D. Spagnolo P. Marchetti N. Massi A. J. Org. Chem.  2011,  76:  450 
  • 15b Taniguchi T. Fujii T. Idota A. Ishibashi H. Org. Lett.  2009,  11:  3298 
  • 15c Sato A. Yorimitsu H. Oshima K. Synlett  2009,  28 
  • 15d Bencivenni G. Lanza T. Leardini R. Nanni D. Spagnolo P. Zanardi G. Org. Lett.  2008,  10:  1127 
  • 15e Fernandez M. Alonso R. J. Org. Chem.  2006,  71:  6767 
  • 15f Beaufils F. Denes F. Renaud P. Org. Lett.  2004,  6:  2563 
  • 15g Fristad GK. Jiang T. Fioroni G. Tetrahedron: Asymmetry  2003,  14:  2853 
  • 15h Yorimitsu H. Wakabayashi K. Shinokubo H. Oshima K. Bull. Chem. Soc. Jpn.  2001,  74:  1963 
  • 15i Nguyen VH. Nishino H. Kajikawa S. Kurosawa K. Tetrahedron  1998,  54:  11445 
  • 15j Benati L. Capella L. Montevecchi PC. Spaglono P. J. Org. Chem.  1995,  60:  7941 
  • 15k Yoshida J. Nakatani S. Isoe S. J. Org. Chem.  1993,  58:  4855 
  • 15l Benati L. Montevecchi PS. Spagnolo PJ. J. Chem. Soc., Perkin Trans. 1  1991,  2103 
  • 15m Griesbaum K. Angew. Chem.  1970,  82:  285 
  • 16a Kabir MS. Lorenz M. Van Linn ML. Namjoshi OA. Ara S. Cook J. J. Org. Chem.  2010,  75:  3626 
  • 16b Taniguchi N. Tetrahedron  2009,  65:  2782 
  • 16c Trostyanskaya IG. Maslova EN. Kazankova MA. Beletskaya IP. Russ. J. Org. Chem.  2008,  44:  32 
  • 16d Carril M. SanMartin R. Dominquez E. Tellitu I. Chem. Eur. J.  2007,  13:  5100 
  • 16e Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 16f Bates CG. Saejueng P. Doherty MQ. Venkataraman D. Org. Lett.  2004,  6:  5005 
  • 16g Kwong FY. Buchwald SL. Org. Lett.  2002,  4:  3517 
  • 17 Demchuk DV. Lutsenko AI. Troyanskii EI. Nikishin GI. Izv. AN SSSR, Ser. Khim.  1990,  2801 
  • 18 Silveira CC. Perin G. Branga AL. Jacob RG. Tetrahedron  1999,  55:  7421 
  • 19 Guerrero PG. Dabdoub MJ. Marques FA. Wosch CL. Baroni ACM. Ferreira AG. Synth. Commun.  2008,  38:  4379 
  • 20 Fitt JJ. Gschwend HW. J. Org. Chem.  1979,  44:  303 
  • 21 Ritter RH. Cohen T. J. Am. Chem. Soc.  1986,  108:  3718 
  • 22a Murahashi S.-I. Yamamura M. Yanagisawa K. Mita N. Kondo K. J. Org. Chem. Soc.  1979,  44:  2408 
  • 22b Huang X. Zhong P. Guo W.-R. Org. Prep. Proced. Int.  1999,  31:  201 
  • 23a Chu C.-M. Tu Z. Wu P. Wang C.-C. Liu J.-T. Kuo C.-W. Shin Y.-H. Yao C.-F. Tetrahedron  2009,  65:  3878 
  • 23b Benati L. Capella L. Montevecchi PC. Spagnolo PJ. J. Org. Chem.  1994,  59:  2818 
24

The products 3a, [¹²r] [¹6f] [¹9] 3c, [²0] 3d, [¹²r] [²¹] 3b, [¹5l] [²²a] [b] 3e, [¹²q] [¹4c] [²³a] [b] 3f, [²³a] 3g,h, [¹8] 3i, [¹²i] [¹5b] [l] [¹6b] [¹7] 3k, [¹5b] [³¹] were identified according to published data. The Z/E isomeric ratio for 3i and 3k was determined by ¹H NMR and ¹³C NMR spectroscopy.

25

Typical Experimental Procedure for the CuI-Catalyzed Hydrothiolation of the Alkynes To a mixture of phenylacetylene (1a, 0.102 g, 1 mmol), CuI (0.006 g, 3 mol%) in DMF (0.5 mL) was added HexSH (2c, 0.118 g, 1 mmol) under an argon atmosphere, the mixture was stirred at 80 ˚C for 2 h and then evaporated under vacuum. The resulting oil was diluted with CHCl3 and filtered. The filtrate was concentrated and purified by column chromatography on silica gel (EtOAc-hexane, 5:95) to afford hexyl-(2-styryl)sulfide (3f, [²³a] 0.198 g, 90%; Z/E = 15:1 by NMR) as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ (Z-isomer) = 7.46-7.15 (m, 5 H, Ph), 6,39 (d, ³ J HH = 10.5 Hz, 1 H, PhCH=), 6.20 (d, ³ J HH = 10.5 Hz, 1 H, =CHS), 2.72 (t, ³ J HH = 7.4 Hz, 2 H, CH2S), 1.65 (m, 2 H), 1.38 (m, 2 H), 1.28 (m, 4 H), 0.87 (t, 3 H, CH3); δ (E-isomer) = 7.34-7.16 (m, 5 H, Ph), 6.72 (d, ³ J HH = 16.0 Hz, 1 H, PhCH=), 6.46 (d, ³ J HH = 16.0 Hz, 1 H, =CHS), 2.79 (t, ³ J HH = 7.4 Hz, 2 H, CH2S), 1.69 (m, 2 H), 1.43 (m, 2 H), 1.31 (m, 4 H), 0.90 (t, 3 H, CH3). ¹³C NMR (100.6 MHz, CDCl3): δ (Z-isomer) = 136.94, 128.45, 128.02, 127.57, 126.55, 125.59, 35.80, 31.27, 30.10, 28.15, 22.43, 13.93; δ (E-isomer) = 136.98, 128.48, 128.05, 127.60, 126.35, 125.05, 32.52, 31,25, 29.23, 28.36, 22.41, 13.96.

26

( E )- N , N -Dimethyl-3-(phenylthio)-2-propenylamine (3c) [²0] ¹H NMR (400 MHz, CDCl3): δ = 7.22-7.50 (m, Ph), 6.39 (dt, ³ J HH = 16.0 Hz, J HH = 1.4 Hz, 1 H, =CHS), 5.87 (dt, ³ J HH = 16.0 Hz, J HH = 1.4 Hz, 1 H, =CHC), 3.23 (d, J HH = 8.0 Hz, 2 H, CH2N), 2.36 (s, 6 H, CH3N). ¹³C NMR (100.6 MHz, CDCl3): δ = 135.57, 128.93, 128.84, 128.11, 126.55, 126.36, 57.10, 44.91. Anal. Calcd for C11H15NS: C, 68.37; H, 7.81; N, 7.25. Found: C, 68.25; H, 8.00; N, 7.38.

27

3-(Phenylthio)prop-2-en-1-ol (3d, E/Z  = 5:1) [¹²r] [²¹]
E -Isomer
¹H NMR (400 MHz, CDCl3): δ = 7.20-7.49 (m, 5 H, Ph), 6.43 (dt, ³ J HH = 14.0 Hz, J HH = 1.4 Hz, 1 H, =CHS), 5.93 (dt, ³ J HH = 1.4 Hz, 1 H, =CHC), 4.16 (d, ² J HH = 7.15 Hz, 2 H, H2CO), 2.15 (br s, 1 H, OH). ¹³C NMR (100.6 MHz, CDCl3): δ = 132.99, 130.93, 129.96, 128.98, 127.36, 127.05, 63.07.
Z -Isomer
¹H NMR (400 MHz, CDCl3): δ = 7.20-7.49 (m, 5 H, Ph), 6.33 (dt, ³ J HH = 8.0 Hz, J HH = 1.2 Hz, 1 H, =CHS), 5.90-5.96 (m, 1 H, =CHC), 4.34 (d, ² J HH = 7.12 Hz, 2 H, H2CO), 2.13 (br s, 1 H, OH). ¹³C NMR (100.6 MHz, CDCl3): δ = 136.88, 129.58, 129.04, 128.98, 127.36, 126.91, 59.65. Anal. Calcd. for C9H10OS: C, 65.06; H, 6.02. Found: C, 65.26; H, 6.19.

28

( Z )-3-(2-Styrylthio)propanethiol (3g) [¹8]

¹H NMR (400 MHz, CDCI3): δ = 7.19-7.48 (m 5 H, Ph), 6.44 (dd, ³ J HH = 10.8 Hz, 1 H, =CHPh), 6.17 (dd, ³ J HH = 10.8 Hz, 1 H, =CHS), 2.84-2.93 (m, 2 H, =CSCH2), 2.57-2.63 (m, 2 H, H2CSH), 1.82-1.97 (m, 2 H, CCH2C), 1.34 (t, ³ J HH = 7.0 Hz, 1 H, SH). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20, 129.16, 128.66, 128.25, 126.91 126.74, 41.61, 30.60, 25.64.

29

2-Benzyl-1,3-dithiane (3h) [¹7]

¹H NMR (400 MHz, CDCI3): δ = 7.25-7.31 (m, 5 H, Ph), 4.25 (t, 1 H, SCH2S), 2.94 (d, 2 H, H2CPh), 2.73 (m, 4 H, SCH2C), 2.05 (m, 1 H), 1.88 (m, 1 H). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20, 129.16, 128.25, 126.91, 48.82, 41.59, 30.60, 25.60.

30

1-Phenyl-2-(phenylthio)propene (3i, [¹²i] [¹5b] [l] [¹6b] [¹8] Z / E  = 5:1)
¹H NMR (400 MHz, CDCl3): δ = 7.15-7.55 (21 H, m), 6.69 (1 H, s, Z form), 2.12 (3 H, s, E form, 0.17), 2.01 (3 H, s, Z form, 0.83). ¹³C NMR (100.6 MHz, CDCl3): δ (Z) = 136.72, 133.50, 131.98, 131.57, 130.79, 128.98, 128.82, 127.96, 127.12, 126.91, 25.55; δ (E) = 137.04, 133.83, 131.96, 131.41, 130.69, 129.03, 128.62, 128.21, 127.33, 126.69, 19.49.

31

( Z )-1,2-Diphenyl-1-(phenylthio)ethene (3k) [¹5b]

¹H NMR (400 MHz, CDCl3): δ = 7.72 (1 H, d, J = 7.6 Hz), 7.62 (1 H, d, J = 7.8 Hz), 6.92-7.52 (13 H, m), 6.79 (1 H, s). ¹³C NMR (100.6 MHz, CDCl3): δ = 140.83, 137.86, 136.64, 135.64, 134.56, 132.25, 129.74, 129.44, 129.00, 128.58, 128.10, 127.95, 127.36, 125.73.

32

Typical Procedure for the Thermal and CuI-Catalyzed Z - to E -Isomerization of Alkenyl Sulfides In each of two Schlenk tubes under argon atmosphere were placed phenyl-(2-styryl)sulfide (Z/E = 2.4:1, 0.106 g, 0.5 mmol). In one of the Schlenk tubes were added thiophenol (2a, 0.055 g, 0.05 mmol), and CuI (0.006 g, 3 mol%). Both tubes were heated at 85 ˚C. The changes of the Z/E ratio was inspected by ¹H NMR spectroscopy. After 4 h without PhSH and CuI the ratio was Z/E = 1.8:1, with CuI and thiol only 100% E-isomer 3a was observed (Table  [³] , entry 1).