Subscribe to RSS
DOI: 10.1055/s-0031-1290345
Regio- and Stereoselective Copper-Catalyzed Addition of Aromatic and Aliphatic Thiols to Terminal and Internal Nonactivated Alkynes
Publication History
Publication Date:
10 February 2012 (online)
Abstract
The CuI-catalyzed regio- and stereoselective hydrothiolation of terminal and internal alkynes affords (Z)-β-alkenylsulfides. The following isomerization of the Z-isomers into E-isomers catalyzed by CuI is described.
Key words
hydrothiolation - alkynes - copper catalyst - stereoselective anti-Markovnikov addition - isomerization
- 1
Trofimov BA.Shainyna BA. In The Chemistry of Sulfur-Containing Functional GroupsPatai S.Rappoport Z. John Wiley and Sons; Chichester: 1993. p.659 - 2
Liu J.Lam JVY.Jim CKW.Ng JCY.Shi J.Su H.Yeung KF.Hong Y.Faisal M.Yu Y.Wong KS.Tang BZ. Macromolecules 2011, 44: 68 -
3a
Sabarre A.Love J. Org. Lett. 2008, 10: 3941 -
3b
Wenkert E.Shepard ME.Mcphail AT. J. Chem. Soc., Chem. Commun. 1986, 1390 -
3c
Wenkert E.Fernandes JB.Michelotti EL.Swindell CS. Synthesis 1983, 701 -
3d
Fiandanese V.Harchese G.Naso F.Ronsini L. Chem. Commun. 1982, 647 -
3e
Venkert E.Ferreira TW.Michelotti EL. Chem. Commun. 1979, 637 -
3f
Okamura H.Miura M.Takei H. Tetrahedron Lett. 1979, 43 -
4a
Muraoka N.Mineno M.Itami K.Yoshida J. J. Org. Chem. 2005, 70: 6933 -
4b
Itami K.Mineno M.Muraoka N.Yoshida J. J. Am. Chem. Soc. 2004, 126: 11778 -
4c
Mauleon P.Nunez AA.Alonso J.Carretero JC. Chem. Eur. J. 2003, 9: 1511 -
4d
Trost BM.Tanigawa Y. J. Am. Chem. Soc. 1979, 101: 4743 -
5a
Singh PP.Yadav AK.Ita H.Junjappa H. J. Org. Chem. 2009, 74: 5496 -
5b
Serra S.Fugnti C.Moro A.
J. Org. Chem. 2001, 66: 7883 -
5c
McDoald FE.Burova SA.Huffman LG. Synthesis 2000, 970 -
5d
Yamazaki S. Synth. Org. Chem. 2000, 58: 50 -
5e
Adrio J.Carretero JC. J. Am. Chem. Soc. 1999, 121: 7411 -
5f
Bruckner R.Huisgen R. Tetrahedron Lett. 1990, 31: 2561 -
5g
Singleton D.Church KM. J. Org. Chem. 1990, 55: 4780 -
5h
Gupta RB.Franck RW.Onan KD.Soll CE. J. Org. Chem. 1989, 54: 1097 -
6a
Trofimov BA.Gusarova NK.Malysheva SF.Ivanova NI.Sukhov BG.Belogorlova NA.Kuimov VA. Synthesis 2002, 2207 -
6b
Trofimov BA.Gusarova NK.Malysheva SF.Sukhov BG.Belogorlova NA.Kuimov VA.Al’pert ML. Sulfur Lett. 2003, 26: 63 - 7
Chen MS.White MC. J. Am. Chem. Soc. 2004, 126: 1346 - 8
Fernandez F.Gomez M.Jansat S.Muller G.Martin E.Flores-Santos I. Organometallics 2005, 24: 3946 - 9
Trost BM.Lavoic AC. J. Am. Chem. Soc. 1983, 105: 5075 - 10
Miller RD.Hassing R. Tetrahedron Lett. 1985, 26: 2395 -
11a
Hunter R.Kaschula CH.Parker IM.Caira MR.Richards P.Travis S.Taute F.Qwebani T. Bioorg. Med. Chem. Lett. 2008, 18: 5277 -
11b
Strebhardt K.Ullrich A. Nat. Rev. Cancer 2006, 6: 321 -
11c
Gumireddy K.Baker SJ.Cosenza SC.Premila J.Kang AD.Robell KA. Proc. Natl. Acad. Sci. U.S.A. 2005, 102: 1992 -
11d
Muraoka N.Mineno M.Itami K.Yoshida J. J. Org. Chem. 2005, 70: 6933 -
11e
Sharma VM.Adi Seshu KV.Sekhar VC.Madan S.Vishnu B.Babu PA.Krishna CV.Sreenu J.Krishna VR.Venkateswarlu A.Rajagopal S.Ajaykumar R.Kumar TS. Bioorg. Med. Chem. Lett. 2004, 14: 67 -
11f
Sader HS.Johnson DM.Jones RN. Antimicrob. Agents Chemother. 2004, 48: 53 -
11g
Johannesson P.Lindeberg G.Johansson A.Nikiforovich G.Godoll A.Synnergren B.Le Greves M.Nyberg F.Karlen A.Hallberg A. J. Med. Chem. 2002, 45: 1767 -
12a
Beletskaya IP.Ananikov VP. Chem. Rev. 2011, 111: 1596 -
12b
Ananikov VP.Zalesskiy SS.Beletskaya IP. Curr. Org. Chem. 2011, 8: 2 -
12c
Bichler P.Love J. Top Organomet. Chem. 2010, 31: 39 -
12d
Ide DM.Eastlund MP.Jupe CL.Stockland RA. Curr. Org. Chem. 2008, 1270 -
12e
Beller M.Seayad J.Tillack A.Jiao H. Angew. Chem. Int. Ed. 2004, 43: 3392 -
12f
Kuniyasu H.Kurosawa H. Chem. Eur. J. 2002, 8: 2661 -
12g
Ogawa A. J. Organomet. Chem. 2000, 611: 463 -
12h
Kondo T.Mitsudo T. Chem. Rev. 2000, 3209 -
12i
Ogawa A.Ikeda T.Kimura K.Hirao T. J. Am. Chem. Soc. 1999, 121: 5108 -
12j
Weiss C.Marks TJ. J. Am. Chem. Soc. 2010, 132: 10533 -
12k
Yang J.Sabarre A.Fraser LR.Patrick BO.Love J. J. Org. Chem. 2009, 74: 182 -
12l
Kuniyasu H.Ogawa A.Sato K.-I.Ryu I.Kambe N.Sonoda N. J. Am. Chem. Soc. 1992, 114: 5902 -
12m
Yang Y.Rioux RM. Chem. Commun. 2011, 47: 6557 -
12n
Ranjit S.Duan Z.Zhang P.Liu X. Org. Lett. 2010, 12: 4134 -
12o
Corma A.Gonzalez-Arellano C.Iglesias M.Sanchez F. Appl. Catal., A 2010, 375: 49 -
12p
Field LD.Messerle BA.Vuong KQ.Turner P. Dalton Trans. 2009, 3599 -
12q
Shoai S.Bichler P.Kang B.Buckler H.Love JA. Organometallics 2007, 26: 5778 -
12r
Burling S.Field LD.Messerle B.Vuong KQ.Turner P. Dalton Trans. 2003, 4181 -
12s
Singer H.Wilkinson G. J. Chem. Soc. A 1968, 2516 -
13a
Weiss CJ.Marks TJ. Organometallics 2010, 29: 6308 -
13b
Weiss CJ.Marks TJ. Dalton Trans. 2010, 6576 -
13c
Eisen NS. Top. Organomet. Chem. 2010, 31: 157 -
13d
Weiss CJ.Wobser SD.Marks TJ. J. Am. Chem. Soc. 2009, 131: 2062 -
14a
O’Donnal JS.Singh S.Metcalf TA.Schwan AL. Eur. Org. Chem. 2009, 547 -
14b
Perin G.Mendes SR.Silva MS.Lenardo E.Jacob RG.Santos PC. Synth. Commun. 2006, 36: 2587 -
14c
Kondoh A.Takami K.Yorimitsu H.Oshima K. J. Org. Chem. 2005, 70: 6468 -
14d
Perin G.Jacob R.Azambuja F.Botteselb G.Siqueira G.Freitag R.Lenardo E. Tetrahedron Lett. 2005, 46: 1679 -
14e
Medel R.Monterde MI.Plumet J.Rojas JK. J. Org. Chem. 2005, 70: 735 -
14f
Arjona O.Medel R.Rojas J.Costa A.Vilarrasa J. Tetrahedron Lett. 2003, 44: 6369 -
14g
Trofimov BA. Curr. Org. Chem. 2002, 6: 11212 -
14h
Carson JF.Boggs LE. J. Org. Chem. 1967, 32: 673 -
14i
Truce W.Heine R. J. Am. Chem. Soc. 1957, 79: 5311 -
14j
Truce WE.Simms JA. J. Am. Chem. Soc. 1956, 78: 2756 -
15a
Minozzi M.Monesi A.Nanni D.Spagnolo P.Marchetti N.Massi A. J. Org. Chem. 2011, 76: 450 -
15b
Taniguchi T.Fujii T.Idota A.Ishibashi H. Org. Lett. 2009, 11: 3298 -
15c
Sato A.Yorimitsu H.Oshima K. Synlett 2009, 28 -
15d
Bencivenni G.Lanza T.Leardini R.Nanni D.Spagnolo P.Zanardi G. Org. Lett. 2008, 10: 1127 -
15e
Fernandez M.Alonso R. J. Org. Chem. 2006, 71: 6767 -
15f
Beaufils F.Denes F.Renaud P. Org. Lett. 2004, 6: 2563 -
15g
Fristad GK.Jiang T.Fioroni G. Tetrahedron: Asymmetry 2003, 14: 2853 -
15h
Yorimitsu H.Wakabayashi K.Shinokubo H.Oshima K. Bull. Chem. Soc. Jpn. 2001, 74: 1963 -
15i
Nguyen VH.Nishino H.Kajikawa S.Kurosawa K. Tetrahedron 1998, 54: 11445 -
15j
Benati L.Capella L.Montevecchi PC.Spaglono P. J. Org. Chem. 1995, 60: 7941 -
15k
Yoshida J.Nakatani S.Isoe S. J. Org. Chem. 1993, 58: 4855 -
15l
Benati L.Montevecchi PS.Spagnolo PJ. J. Chem. Soc., Perkin Trans. 1 1991, 2103 -
15m
Griesbaum K. Angew. Chem. 1970, 82: 285 -
16a
Kabir MS.Lorenz M.Van Linn ML.Namjoshi OA.Ara S.Cook J. J. Org. Chem. 2010, 75: 3626 -
16b
Taniguchi N. Tetrahedron 2009, 65: 2782 -
16c
Trostyanskaya IG.Maslova EN.Kazankova MA.Beletskaya IP. Russ. J. Org. Chem. 2008, 44: 32 -
16d
Carril M.SanMartin R.Dominquez E.Tellitu I. Chem. Eur. J. 2007, 13: 5100 -
16e
Beletskaya IP.Cheprakov AV. Coord. Chem. Rev. 2004, 248: 2337 -
16f
Bates CG.Saejueng P.Doherty MQ.Venkataraman D. Org. Lett. 2004, 6: 5005 -
16g
Kwong FY.Buchwald SL. Org. Lett. 2002, 4: 3517 - 17
Demchuk DV.Lutsenko AI.Troyanskii EI.Nikishin GI. Izv. AN SSSR, Ser. Khim. 1990, 2801 - 18
Silveira CC.Perin G.Branga AL.Jacob RG. Tetrahedron 1999, 55: 7421 - 19
Guerrero PG.Dabdoub MJ.Marques FA.Wosch CL.Baroni ACM.Ferreira AG. Synth. Commun. 2008, 38: 4379 - 20
Fitt JJ.Gschwend HW. J. Org. Chem. 1979, 44: 303 - 21
Ritter RH.Cohen T. J. Am. Chem. Soc. 1986, 108: 3718 -
22a
Murahashi S.-I.Yamamura M.Yanagisawa K.Mita N.Kondo K. J. Org. Chem. Soc. 1979, 44: 2408 -
22b
Huang X.Zhong P.Guo W.-R. Org. Prep. Proced. Int. 1999, 31: 201 -
23a
Chu C.-M.Tu Z.Wu P.Wang C.-C.Liu J.-T.Kuo C.-W.Shin Y.-H.Yao C.-F. Tetrahedron 2009, 65: 3878 -
23b
Benati L.Capella L.Montevecchi PC.Spagnolo PJ. J. Org. Chem. 1994, 59: 2818
References and Notes
The products 3a, [¹²r] [¹6f] [¹9] 3c, [²0] 3d, [¹²r] [²¹] 3b, [¹5l] [²²a] [b] 3e, [¹²q] [¹4c] [²³a] [b] 3f, [²³a] 3g,h, [¹8] 3i, [¹²i] [¹5b] [l] [¹6b] [¹7] 3k, [¹5b] [³¹] were identified according to published data. The Z/E isomeric ratio for 3i and 3k was determined by ¹H NMR and ¹³C NMR spectroscopy.
25Typical Experimental Procedure for the CuI-Catalyzed Hydrothiolation of the Alkynes To a mixture of phenylacetylene (1a, 0.102 g, 1 mmol), CuI (0.006 g, 3 mol%) in DMF (0.5 mL) was added HexSH (2c, 0.118 g, 1 mmol) under an argon atmosphere, the mixture was stirred at 80 ˚C for 2 h and then evaporated under vacuum. The resulting oil was diluted with CHCl3 and filtered. The filtrate was concentrated and purified by column chromatography on silica gel (EtOAc-hexane, 5:95) to afford hexyl-(2-styryl)sulfide (3f, [²³a] 0.198 g, 90%; Z/E = 15:1 by NMR) as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ (Z-isomer) = 7.46-7.15 (m, 5 H, Ph), 6,39 (d, ³ J HH = 10.5 Hz, 1 H, PhCH=), 6.20 (d, ³ J HH = 10.5 Hz, 1 H, =CHS), 2.72 (t, ³ J HH = 7.4 Hz, 2 H, CH2S), 1.65 (m, 2 H), 1.38 (m, 2 H), 1.28 (m, 4 H), 0.87 (t, 3 H, CH3); δ (E-isomer) = 7.34-7.16 (m, 5 H, Ph), 6.72 (d, ³ J HH = 16.0 Hz, 1 H, PhCH=), 6.46 (d, ³ J HH = 16.0 Hz, 1 H, =CHS), 2.79 (t, ³ J HH = 7.4 Hz, 2 H, CH2S), 1.69 (m, 2 H), 1.43 (m, 2 H), 1.31 (m, 4 H), 0.90 (t, 3 H, CH3). ¹³C NMR (100.6 MHz, CDCl3): δ (Z-isomer) = 136.94, 128.45, 128.02, 127.57, 126.55, 125.59, 35.80, 31.27, 30.10, 28.15, 22.43, 13.93; δ (E-isomer) = 136.98, 128.48, 128.05, 127.60, 126.35, 125.05, 32.52, 31,25, 29.23, 28.36, 22.41, 13.96.
26( E )- N , N -Dimethyl-3-(phenylthio)-2-propenylamine (3c) [²0] ¹H NMR (400 MHz, CDCl3): δ = 7.22-7.50 (m, Ph), 6.39 (dt, ³ J HH = 16.0 Hz, J HH = 1.4 Hz, 1 H, =CHS), 5.87 (dt, ³ J HH = 16.0 Hz, J HH = 1.4 Hz, 1 H, =CHC), 3.23 (d, J HH = 8.0 Hz, 2 H, CH2N), 2.36 (s, 6 H, CH3N). ¹³C NMR (100.6 MHz, CDCl3): δ = 135.57, 128.93, 128.84, 128.11, 126.55, 126.36, 57.10, 44.91. Anal. Calcd for C11H15NS: C, 68.37; H, 7.81; N, 7.25. Found: C, 68.25; H, 8.00; N, 7.38.
27
3-(Phenylthio)prop-2-en-1-ol
(3d,
E/Z
= 5:1)
[¹²r]
[²¹]
E
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.43 (dt, ³
J
HH = 14.0
Hz, J
HH = 1.4 Hz,
1 H, =CHS), 5.93 (dt, ³
J
HH = 1.4 Hz, 1 H, =CHC),
4.16 (d, ²
J
HH = 7.15
Hz, 2 H, H2CO), 2.15 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 132.99,
130.93, 129.96, 128.98, 127.36, 127.05, 63.07.
Z
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.33 (dt, ³
J
HH = 8.0
Hz, J
HH = 1.2 Hz,
1 H, =CHS), 5.90-5.96 (m, 1 H, =CHC),
4.34 (d, ²
J
HH = 7.12
Hz, 2 H, H2CO), 2.13 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 136.88, 129.58,
129.04, 128.98, 127.36, 126.91, 59.65. Anal. Calcd. for C9H10OS:
C, 65.06; H, 6.02. Found: C, 65.26; H, 6.19.
( Z )-3-(2-Styrylthio)propanethiol (3g) [¹8]
¹H NMR (400 MHz, CDCI3): δ = 7.19-7.48 (m 5 H, Ph), 6.44 (dd, ³ J HH = 10.8 Hz, 1 H, =CHPh), 6.17 (dd, ³ J HH = 10.8 Hz, 1 H, =CHS), 2.84-2.93 (m, 2 H, =CSCH2), 2.57-2.63 (m, 2 H, H2CSH), 1.82-1.97 (m, 2 H, CCH2C), 1.34 (t, ³ J HH = 7.0 Hz, 1 H, SH). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20, 129.16, 128.66, 128.25, 126.91 126.74, 41.61, 30.60, 25.64.
292-Benzyl-1,3-dithiane (3h) [¹7]
¹H NMR (400 MHz, CDCI3): δ = 7.25-7.31 (m, 5 H, Ph), 4.25 (t, 1 H, SCH2S), 2.94 (d, 2 H, H2CPh), 2.73 (m, 4 H, SCH2C), 2.05 (m, 1 H), 1.88 (m, 1 H). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20, 129.16, 128.25, 126.91, 48.82, 41.59, 30.60, 25.60.
30
1-Phenyl-2-(phenylthio)propene
(3i,
[¹²i]
[¹5b]
[l]
[¹6b]
[¹8]
Z
/
E
= 5:1)
¹H
NMR (400 MHz, CDCl3): δ = 7.15-7.55
(21 H, m), 6.69 (1 H, s, Z form), 2.12
(3 H, s, E form, 0.17), 2.01 (3 H, s, Z form, 0.83). ¹³C
NMR (100.6 MHz, CDCl3): δ (Z) = 136.72, 133.50,
131.98, 131.57, 130.79, 128.98, 128.82, 127.96, 127.12, 126.91,
25.55; δ (E) = 137.04,
133.83, 131.96, 131.41, 130.69, 129.03, 128.62, 128.21, 127.33,
126.69, 19.49.
( Z )-1,2-Diphenyl-1-(phenylthio)ethene (3k) [¹5b]
¹H NMR (400 MHz, CDCl3): δ = 7.72 (1 H, d, J = 7.6 Hz), 7.62 (1 H, d, J = 7.8 Hz), 6.92-7.52 (13 H, m), 6.79 (1 H, s). ¹³C NMR (100.6 MHz, CDCl3): δ = 140.83, 137.86, 136.64, 135.64, 134.56, 132.25, 129.74, 129.44, 129.00, 128.58, 128.10, 127.95, 127.36, 125.73.
32Typical Procedure for the Thermal and CuI-Catalyzed Z - to E -Isomerization of Alkenyl Sulfides In each of two Schlenk tubes under argon atmosphere were placed phenyl-(2-styryl)sulfide (Z/E = 2.4:1, 0.106 g, 0.5 mmol). In one of the Schlenk tubes were added thiophenol (2a, 0.055 g, 0.05 mmol), and CuI (0.006 g, 3 mol%). Both tubes were heated at 85 ˚C. The changes of the Z/E ratio was inspected by ¹H NMR spectroscopy. After 4 h without PhSH and CuI the ratio was Z/E = 1.8:1, with CuI and thiol only 100% E-isomer 3a was observed (Table [³] , entry 1).