Synlett, Table of Contents Synlett 2012; 23(10): 1473-1476DOI: 10.1055/s-0031-1290375 letter © Georg Thieme Verlag Stuttgart · New York Synthetic Utility of Sugar-Derived Cyclic Nitrones: A Diastereoselective Synthesis of Linear 4-Azatriquinanes Anandaraju Bandaru Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, Fax: +91(22)25723480 Email: kpk@chem.iitb.ac.in , Krishna P. Kaliappan* Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, Fax: +91(22)25723480 Email: kpk@chem.iitb.ac.in › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A diastereoselective Pauson–Khand reaction has been utilized as the key step in the construction of azatriquinanes from sugar-derived nitrones. Key words Key wordsdiastereoselectivity - sugar derivatives - nitrones - Pauson–Khand reaction Full Text References References and Notes 1a Marchand AP. Synlett 1991; 73 1b Mehta G, Srikrishna A. Chem. Rev. 1997; 97: 671 1c Singh V, Thomas B. Tetrahedron 1998; 54: 3647 2a Mellows G, Mantle PG, Feline TC, Williams DJ. Phytochemistry 1973; 12: 2717 2b Paquette LA. Topics in Current Chemistry . Vol. 79. Springer; Berlin: 1979: 41-165 2c Singh V, Pal S, Tosh DK, Mobin SM. Tetrahedron 2007; 63: 2446 3 Zjawiony JK. J. Nat. Prod. 2004; 67: 300 4 Rukachaisirikul V, Tansakul C, Saithong S, Pakawatchai C, Isaka M, Suvannakad R. J. Nat. Prod. 2005; 68: 1674 5a Hext NM, Hansen J, Blake AJ, Hibbs DE, Hursthouse MB, Shishkin OV, Mascal M. J. Org. Chem. 1998; 63: 6016 5b Jevric M, Zheng T, Meher NM, Fettinger JC, Mascal M. Angew. Chem. Int. Ed. 2011; 50: 717 5c Li Y, Meng Y, Meng X, Li Z. Tetrahedron 2011; 67: 4002 6a Yadav JS, Kumar PT. K, Gadgil VR. Tetrahedron Lett. 1992; 33: 3687 6b Clive DL. J, Cole DC, Tao Y. J. Org. Chem. 1994; 59: 1396 6c Woltering TJ, Hoffmann HM. R. Tetrahedron 1995; 51: 7389 6d Singh V, Alam SQ. Bioorg. Med. Chem. Lett. 2000; 2517 6e Ader TA, Champey CA, Kuznetsova LV, Li T, Lim Y.-H, Rucando D, Sieburth SMcN. Org. Lett. 2001; 3: 2165 6f Gurjar MK, Ravindranadh SV, Kumar P. Chem. Commun. 2001; 917 6g Singh V, Alam SQ, Praveena GD. Tetrahedron 2002; 58: 9729 6h Mascal M, Hafezi N, Meher NK, Fettinger JC. J. Am. Chem. Soc. 2008; 130: 13532 7a Kaliappan KP, Nandurdikar RS. Chem. Commun. 2004; 2056 7b Kaliappan KP, Nandurdikar RS, Shaikh MM. Tetrahedron 2006; 62: 5064 7c Ramakrishna K, Kaliappan KP. Synlett 2011; 2580 8a Desvergnes S, Py S, Vallee Y. J. Org. Chem. 2005; 70: 1459 8b Kaliappan KP, Das P. Synlett 2008; 841 8c Kaliappan KP, Das P, Chavan ST, Sabharwal SG. J. Org. Chem. 2009; 74: 6266 8d Delso I, Tejero T, Goti A, Merino P. Tetrahedron 2010; 66: 1220 8e Delso I, Marca E, Mannucci V, Tejero T, Goti A, Merino P. Chem. Eur. J. 2010; 16: 9910 8f Khangarot RK, Kaliappan KP. Eur. J. Org. Chem. 2011; 6117 9a Betkekar VV, Panda S, Kaliappan KP. Org. Lett. 2012; 14: 198 9b Subrahmanyam AV, Palanichamy K, Kaliappan KP. Chem. Eur. J. 2010; 16: 8545 9c Nandurdikar RS, Subrahmanyam AV, Kaliappan KP. Eur. J. Org. Chem. 2010; 2788 9d Kaliappan KP, Subrahmanyam AV. Org. Lett. 2007; 9: 1121 9e Kaliappan KP, Ravikumar V. Org. Biomol. Chem. 2005; 3: 848 10a Pauson PL. Tetrahedron 1985; 41: 5855 10b Shambayati S, Crowe WE, Schreiber SL. Tetrahedron Lett. 1990; 31: 5289 10c Hoye TR, Suriano J. J. Org. Chem. 1993; 58: 1659 10d Brummond KM, Kent JL. Tetrahedron 2000; 56: 3263 10e Laschat S, Becheanu A, Bell T, Baro A. Synlett 2005; 2547 11 Iza A, Carrillo L, Vicario JL, Badia D, Reyes E, Martinez JI. Org. Biomol. Chem. 2010; 8: 2238 12 Cicchi S, Bonanni M, Cardona F, Revuelta J, Goti A. Org. Lett. 2003; 5: 1773 13a Hotha S, Maurya SK, Gurjar MK. Tetrahedron Lett. 2005; 46: 5329 13b Betik R, Kotora M. Eur. J. Org. Chem. 2011; 3279 14 Genaral Procedure for Pauson–Khand Reaction: To a stirred solution of enyne (1 mmol) in CH2Cl2 (30 mL), [Co2(CO)8] (1.2 mmol) was added under a nitrogen atmosphere at 25 °C. After stirring at 25 °C for 1 h, the solvent was removed to obtain the crude product. To a solution of the above crude product in toluene (20 mL), DMSO (10 mmol) was added and the solution was heated at reflux overnight at 80 °C. After completion, the reaction mixture was quenched with 1% HCl (50 mL) (except for compounds 33 and 34, which were quenched with water) and extracted with CH2Cl2. The combined organic layers were dried (Na2SO4) and concentrated. The crude product was purified by basic alumina column chromatography. Data for (1S,2S,3S,8aS,8bS)-1,2-bis(benzyloxy)-3-(benzyloxymethyl)-1,2,3,8,8a,8b-hexahydrocyclo-penta[a]pyrrolizin-7(5H)-one (15): R f = 0.4 (EtOAc–hexanes, 50%); [α] d 20 –9.8 (c 1.00, CHCl3); 1H NMR (CDCl3, 400 MHz): δ = 7.37–7.26 (m, 15 H), 6.0–5.99 (m, 1 H), 4.69–4.44 (m, 6 H), 4.08–4.02 (m, 3 H), 3.71 (d, J = 16.9 Hz, 1 H), 3.62 (dd, J = 9.4, 4.5 Hz, 1 H), 3.52 (dd, J = 9.4, 6.5 Hz, 1 H), 3.29–3.24 (m, 1 H), 3.19 (dd, J = 10.5, 3.3 Hz, 1 H), 3.12–3.08 (m, 1 H), 2.60 (dd, J = 17.6, 6.2 Hz, 1 H), 2.10 (dd, J = 17.6, 3.3 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 209.3, 186.9, 138.4, 138.1, 137.7, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 125.1, 86.8, 86.1, 73.6, 73.0, 72.7, 72.5, 72.3, 70.2, 54.2, 48.5, 40.6; IR (neat): 3872, 3030, 2924, 2854, 2109, 1966, 1703, 1646, 1454, 1367, 1306, 1215, 1106, 1028, 754, 698 cm–1; HRMS (ESI): calcd for C32H34NO4 [M + 1]+ 496.2488; found 496.2469 Supplementary Material Supplementary Material Supporting Information