Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(12): 1843-1846
DOI: 10.1055/s-0031-1290385
DOI: 10.1055/s-0031-1290385
letter
Potent Oligomerization and Macrocyclization Activity of the Thioesterase Domain of Vicenistatin Polyketide Synthase
Further Information
Publication History
Received: 01 February 2012
Accepted after revision: 27 April 2012
Publication Date:
21 June 2012 (online)
Abstract
The thioesterase domain of the polyketide synthase involved in the biosynthesis of the 20-membered macrolactam antibiotic vicenistatin (VinTE) was found to catalyze oligomerization and macrocyclization of ω-hydroxy fatty acid ethyl esters to afford 17–28-membered macrocyclic lactones. The ring sizes of the macrocycles appear to be limited to the more moderate sizes because of the space limitation of the active site of VinTE. It was also verified that the initially formed linear dimer is first released from the active site of VinTE and then is recognized again by VinTE prior to its transformation to the cyclic dimer.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1 Kopp F, Marahiel MA. Nat. Prod. Rep. 2007; 24: 735
- 2 Kohli RM, Walsh CT. Chem. Commun. 2003; 297
- 3 Kohli RM, Trauger JW, Schwarzer D, Marahiel MA, Walsh CT. Biochemistry 2001; 40: 7099
- 4 Kohli RM, Walsh CT, Burkart MD. Nature (London) 2002; 418: 658
- 5 Kohli RM, Takagi J, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 1247
- 6 Kudo F, Kitayama T, Kakinuma K, Eguchi T. Tetrahedron Lett. 2006; 47: 1529
- 7 Aldrich CC, Venkatraman L, Sherman DH, Fecik RA. J. Am. Chem. Soc. 2005; 127: 8910
- 8 He W, Wu J, Khosla C, Cane DE. Bioorg. Med. Chem. Lett. 2006; 16: 391
- 9 Boddy CN, Schneider TL, Hotta K, Walsh CT, Khosla C. J. Am. Chem. Soc. 2003; 125: 3428
- 10 Gokhale RS, Hunziker D, Cane DE, Khosla C. Chem. Biol. 1999; 6: 117
- 11 Lu H, Tsai SC, Khosla C, Cane DE. Biochemistry 2002; 41: 12590
- 12 Wang M, Opare P, Boddy CN. Bioorg. Med. Chem. Lett. 2009; 19: 1413
- 13 Grunewald J, Sieber SA, Marahiel MA. Biochemistry 2004; 43: 2915
- 14 Rodefeld L, Tochtermann W. Tetrahedron 1998; 54: 5893
- 15 Eguchi T, Yamamoto K, Mizoue K, Kakinuma K. J. Antibiot. 2004; 57: 156
- 16 Demole E, Enggist P. Helv. Chim. Acta 1978; 61: 2318
- 17 Tsai SC, Miercke LJ, Krucinski J, Gokhale R, Chen JC, Foster PG, Cane DE, Khosla C, Stroud RM. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 14808
- 18 Giraldes JW, Akey DL, Kittendorf JD, Sherman DH, Smith JL, Fecik RA. Nat. Chem. Biol. 2006; 2: 531
- 19 Akey DL, Kittendorf JD, Giraldes JW, Fecik RA, Sherman DH, Smith JL. Nat. Chem. Biol. 2006; 2: 537
- 20 Shinohara Y, Kudo F, Eguchi T. J. Am. Chem. Soc. 2011; 133: 18134
- 21 Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT. Chem. Biol. 1999; 6: 385
- 22 Hoyer KM, Mahlert C, Marahiel MA. Chem. Biol. 2007; 14: 13
- 23 Carvalho R, Reid R, Viswanathan N, Gramajo H, Julien B. Gene 2005; 359: 91
- 24 Perez M, Crespo C, Schleissner C, Rodriguez P, Zuniga P, Reyes F. J. Nat. Prod. 2009; 72: 2192
- 25 Tohyama S, Kakinuma K, Eguchi T. J. Antibiot. 2006; 59: 44
- 26 Kudo F, Motegi A, Mizoue K, Eguchi T. ChemBioChem 2010; 11: 1574
- 27 Madsen CM, Clausen MH. Eur. J. Org. Chem. 2011; 3107
- 28 Parenty A, Moreau X, Campagne JM. Chem. Rev. 2006; 106: 911
- 29 Crane EA, Scheidt KA. Angew. Chem. Int. Ed. 2010; 49: 8316
- 30 Hassan HM. A. Chem. Commun. 2010; 46: 9100
- 31 Dong H, Wang H.-D, Cao S.-G, Shen J.-C. Biotechnol. Lett. 1998; 20: 905
- 32 Mortison JD, Sherman DH. J. Org. Chem. 2010; 75: 7041