Synlett 2012; 23(14): 2132-2136
DOI: 10.1055/s-0031-1290434
letter
© Georg Thieme Verlag Stuttgart · New York

ortho-Amide-Directed Oxidation of Internal Aryl Alkynes Mediated by Cerium(IV) Ammonium Nitrate

Chieh-Fu Su
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Email: jjwang@kmu.edu.tw
,
Wan-Ping Hu
b   Department of Biotechnology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
,
Jaya Kishore Vandavasi
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Email: jjwang@kmu.edu.tw
,
Chao-Cheng Liao
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Email: jjwang@kmu.edu.tw
,
Chen-Ya Hung
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Email: jjwang@kmu.edu.tw
,
Jeh-Jeng Wang*
a   Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Email: jjwang@kmu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 22 May 2012

Accepted after revision: 13 June 2012

Publication Date:
03 August 2012 (online)


Abstract

A fascinating oxidation of alkynes mediated by CAN directed by the amide group to synthesize N-[2-(2-oxo-2-phenylacetyl)phenyl]benzamide derivatives under mild conditions is reported. Excellent yields were obtained with various substituents by this method.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Rozwadowska MD, Chrzanowska M. Tetrahedron 1985; 41: 2885
    • 1b Angelstro MR, Mehdi S, Burkhart JP, Peet NP, Bey P. J. Med. Chem. 1990; 33: 11
    • 1c Maurya R, Singh R, Deepak M, Handa SS, Yadav PP, Mishra PK. Phytochemistry 2004; 65: 915
    • 1d Mahabusarakam W, Deachathai S, Phongpaichit S, Jansakul C, Taylor WC. Phytochemistry 2004; 65: 1185
    • 1e Nicolaou KC, Gray DL. F, Tae J. J. Am. Chem. Soc. 2004; 126: 613
    • 1f Wadkins RM, Hyatt JL, Wei X, Yoon KJ. P, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM. J. Med. Chem. 2005; 48: 2906

      For recent examples, see:
    • 2a Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
    • 2b Shipe WD, Yang F, Zhao Z, Wolkenberg SE, Nolt MB, Lindsley CW. Heterocycles 2006; 70: 655
    • 2c Deng X, Mani N. Org. Lett. 2006; 8: 269
    • 2d Held I, Xu SJ, Zipse H. Synthesis 2007; 1185
    • 2e Rong F, Chow S, Yan S, Larson G, Hong Z, Wu J. Bioorg. Med. Chem. Lett. 2007; 17: 1663
    • 2f Herrera AJ, Rondón M, Suárez E. J. Org. Chem. 2008; 73: 3384
    • 2g Boyce GR, Johnson JS. Angew. Chem. Int. Ed. 2010; 49: 8930

      For recent examples on the synthesis of 1,2-diketones, see:
    • 3a Katritzky AR, Zhang D, Kirichenko K. J. Org. Chem. 2005; 70: 3271
    • 3b Giraud A, Provot O, Peyrat J.-F, Alami M, Brion J.-D. Tetrahedron 2006; 62: 7667
    • 3c Wan Z, Jones CD, Mitchell D, Pu JY, Zhang TY. J. Org. Chem. 2006; 71: 826
    • 3d Mousset C, Provot O, Hamze A, Bignon J, Brion J.-D, Alami M. Tetrahedron 2008; 64: 4287
    • 3e Niu M, Fu H, Jiang Y, Zhao Y. Synthesis 2008; 2879
    • 3f Tan KJ, Wille U. Chem. Commun. 2008; 6239
    • 3g Chu JH, Chen Y.-J, Wu M.-J. Synthesis 2009; 2155
    • 3h Ren W, Xia Y, Ji S.-J, Zhang Y, Wan X, Zhao J. Org. Lett. 2009; 11: 1841
    • 3i Ren W, Liu J, Chen L, Wan X. Adv. Synth. Catal. 2010; 352: 1424
    • 3j Mori S, Takubo M, Yanase T, Maegawa T, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 1630

      For recent reviews on the synthesis and reaction of ynamides, see:
    • 4a Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 4b DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 4c For a recent example on the synthesis of α-keto imides, see: Al-Rashid ZF, Johnson WL, Hsung RP, Wei Y, Yao P.-Y, Liu R, Zhao K. J. Org. Chem. 2008; 73: 8780
    • 4d For a related example on the synthesis of α-keto amides, see: Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 5a Sanz R, Castroviejo MP, Guilarte V, Pérez A, Fãnanás FJ. J. Org. Chem. 2007; 72: 5113
    • 5b Maresh JJ, Giddings L.-A, Friedrich A, Loris EA, Panjikar S, Trout BL, Stockigt J, Peters B, O’Connor SE. J. Am. Chem. Soc. 2008; 130: 710
    • 5c Ashiwabara T, Tanaka M. J. Org. Chem. 2009; 74: 3958
    • 6a Kirihara M, Ochiai Y, Takizawa S, Takahata H, Nemoto H. Chem. Commun. 1999; 1387
    • 6b Tymonko A, Nattier BA, Mohan RS. Tetrahedron Lett. 1999; 40: 7657
    • 6c Okimoto M, Takahashi Y, Nagata Y, Sasaki G, Numata K. Synthesis 2005; 705
    • 6d Joo C, Kang S, Kim SM, Han H, Yang JW. Tetrahedron Lett. 2010; 51: 6006
    • 8a Mousset C, Giraud A, Provot O, Hamze A, Bignon J, Liu JM, Thoret S, Dubois J, Brion J, Alami M. Bioorg. Med. Chem. Lett. 2008; 18: 3266
    • 8b Ren W, Xia Y, Ji S, Zhang Y, Wan X, Zhao J. Org. Lett. 2009; 11: 1841
  • 9 Xu C, Xu M, Jia Y, Li CY. Org. Lett. 2011; 13: 1556
    • 10a Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X. Org. Lett. 2011; 13: 2274
    • 10b Lin G, Li C, Hung S, Liu R. Org. Lett. 2008; 10: 5059
    • 11a Ren W, Liu J, Chen L, Wan X. Adv. Synth. Catal. 2010; 352: 1424
    • 11b Tummatorn J, Khorphueng P, Petsom A, Muangsin N, Chaichit N, Roengsumran S. Tetrahedron 2007; 63: 11878
    • 12a Li P, Cheong FH, Chao L, Lin YH, Williams ID. J. Mol. Catal. A: Chem. 1999; 145: 111
    • 12b Zhu Y, Kulkarni AP, Wu P, Jenekhe SA. Adv. Synth. Catal. 2010; 352: 1630
    • 12c Dötz F, Brand JD, Ito S, Gherghel L, Müllen K. J. Am. Chem. Soc. 2000; 122: 7707
    • 12d Nobuta T, Tada N, Hattori K, Hirashima S, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 875
    • 12e Chen K, Li H, Chen C, Yang S, Hsieh B, Hsu C. Macromolecules 2005; 38: 8617
    • 12f Giraud A, Provot O, Peyrat J, Alami M, Brion J. Tetrahedron 2006; 62: 7667
  • 13 Molander GA. Chem. Rev. 1992; 92: 29
  • 14 Wille U, Andropof J. Aust. J. Chem. 2007; 60: 420
  • 15 Oxidations in Organic Chemistry, ACS Monograph Series 186. Hudlicky M. American Chemical Society; Washington DC: 1990
  • 16 Ganguly NC, Datta M, De P, Chakravarty R. Synth. Commun. 2003; 33: 647
  • 17 General Procedure A mixture of the substituted N-(2-phenylethynylphenyl)-benzamide 1 with CAN (50 mol%) in MeCN and CH2Cl2 as 1:3 ratio under oxygen 1.0133 bar pressure at 28 °C for 24 h, monitored by TLC, extracted with CH2Cl2 and H2O layer was washed with CH2Cl2. Combined organic layers were washed with H2O and brine, dried over anhyd Na2SO4, filtered, concentrated, and purified by column chromatography (CH2Cl2–hexane, 2:3) to give the corresponding compounds 2. N-[2-(2-Oxo-2-phenylacetyl)phenyl]benzamide (2a) Yellow solid; 92% yield; mp 116–118 °C. 1H NMR (400 MHz, CDCl3): δ = 12.33 (NH), 9.10–9.07 (m, 1 H), 8.13–8.10 (m, 2 H), 7.98–7.96 (m, 2 H), 7.71–7.51(m, 9 H), 7.14–7.15 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 199.3, 193.0, 166.1, 142.8, 137.3, 135.2, 134.3, 134.2, 132.7, 132.3, 130.0, 129.2, 129.1, 129.0, 127.5, 127.1, 122.8, 120.9, 118.2. HRMS (EI): m/z calcd for C21H15NO3Na: 352.0950; found: 352.0948. 4-Methyl-N-[2-(2-oxo-2-phenylacetyl)phenyl]benzamide (2b) Yellow solid; 85% yield; mp 128–130 °C. 1H NMR (400 MHz, CDCl3): δ = 12.30 (NH), 9.09–9.07 (m, 1 H), 8.02–7.96 (m, 4 H), 7.72–7.62 (m, 3 H), 7.56–7.52 (m, 2 H), 7.34–7.32 (m, 2 H), 7.13–7.09 (m, 2 H), 7.33 (d, J = 8.4 Hz, 2 H), 7.11 (t, J = 8.0 Hz, 1 H), 2.44 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.3, 193.0, 166.2, 143.0, 137.3, 135.1, 134.2, 132.8, 131.5, 130.0, 129.6, 129.2, 127.6, 122.6, 120.9, 118.2, 21.5. HRMS (EI): m/z calcd for C22H17NO3Na: 366.1106; found: 366.1105.
  • 18 CCDC number for compound 2q is CCDC 872227.