Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(16): 2337-2340
DOI: 10.1055/s-0031-1290446
DOI: 10.1055/s-0031-1290446
letter
Efficient Synthesis of 2,5-Diketopiperazines by Staudinger-Mediated Cyclization
Further Information
Publication History
Received: 30 April 2012
Accepted after Revision: 25 June 2012
Publication Date:
10 September 2012 (online)
Abstract
Solution- and solid-phase Staudinger-mediated cyclizations were assessed to efficiently prepare hetero-2,5-diketopiperazines from their protected azido dipeptide thioesters under microwave irradiation. Short reaction time, good yields and ease of purification are the main assets of this methodology.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1 Humphrey JM, Chamlerlin AR. Chem. Rev. 1997; 97: 2243
- 2 Han S, Kim Y. Tetrahedron 2004; 60: 2447
- 3 Ray JG, Ly JT, Savin DA. Polym. Chem. 2011; 2: 1536
- 4 Balboni G, Guerrini R, Salvadori S, Tomatis R, Bryant SD, Bianchi C, Attila M, Lazarus LH. Biol. Chem. 1997; 378: 19
- 5 Bryant SD, Balboni G, Guerrini R, Salvadori S, Tomatis R, Lazarus LH. Biol. Chem. 1997; 378: 107
- 6 Crescenzi O, Fraternali F, Picone D, Tancredi T, Balboni G, Guerrini R, Lazarus LH, Salvadori S, Temussi PA. Eur. J. Biochem. 1997; 247: 66
- 7 Hayashi Y, Orikasa S, Tanaka K, Kanoh K, Kiso Y. J. Org. Chem. 2000; 65: 8402
- 8 Edmondson S, Danishefsky SJ, Sepp-Lorenzino L, Rosen N. J. Am. Chem. Soc. 1999; 121: 2147
- 9 Kanoh K, Kohno S, Katada J, Takahashi J, Uno I, Hayashi Y. Bioorg. Med. Chem. 1999; 7: 1451
- 10 Graz CJ. M, Grant GD, Brauns SC, Hunt A, Jamie H, Milne PJ. J. Pharm. Pharmacol. 2000; 52: 75
- 11 Boger DL, Fink BE, Hedrick MP. Bioorg. Med. Chem. Lett. 2000; 10: 1019
- 12 Prakash KR. C, Tang Y, Kozikowski AP, Flippen-Anderson JL, Knoblach SM, Faden AI. Bioorg. Med. Chem. 2002; 10: 3043
- 13 Fdhila F, Vázquez V, Sánchez JL, Riguera R. J. Nat. Prod. 2003; 66: 1299
- 14 Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim Y.-J, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima N. J. Antibiot. 2001; 54: 911
- 15 Stevens BW, Joska TM, Anderson AC. Drug Dev. Res. 2006; 66: 9
- 16 Houston DR, Synstad B, Eijsink VG. H, Stark MJ. R, Eggleston IM, Van Aalten DM. F. J. Med. Chem. 2004; 47: 5713
- 17 Nilanonta C, Isaka M, Kittakoop P, Saenboonrueng J, Rukachaisirikul V, Kongsaere P, Thebtaranonth Y. J. Antibiot. 2003; 56: 647
- 18 Sinha S, Srivastava R, De Clercq E, Singh RK. Nucleosides, Nucleotides Nucleic Acids 2004; 23: 1815
- 19 Hu F, Chou CJ, Gottesfeld JM. Bioorg. Med. Chem. Lett. 2009; 19: 3928
- 20 Monbaliu J.-CM, Hansen FK, Beagle LK, Panzner MJ, Steel PJ, Todadze E, Stevens CV, Katritzky AR. Chem. Eur. J. 2012; 18: 2632
- 21 Fairweather KA, Sayyadi N, Luck IJ, Clegg JK, Jolliffe KA. Org. Lett. 2010; 12: 3136
- 22 Singh EK, Ravula S, Pan C, Pan P, Vasko RC, Lapera SA, Weerasinghe SV. W, Pflum MK. H, McAlpine SR. Bioorg. Med. Chem. Lett. 2008; 18: 2549
- 23 Singh EK, Nazarova LA, Lapera SA, Alexander LD, McAlpine SR. Tetrahedron Lett. 2010; 51: 4357
- 24 Nolasco L, Gonzalez MP, Caggiano L, Jackson RF. W. J. Org. Chem. 2009; 74: 8280
- 25 Tai D, Lin Y. Chem. Commun. 2008; 43: 5598
- 26 Pérez-Picaso L, Escalante J, Olivio HF, Rios MY. Molecules 2009; 14: 2836
- 27 Cini E, Botta CB, Rodriguez M, Taddei M. Tetrahedron Lett. 2009; 50: 7159
- 28 Nitecki DE, Halpern B, Westley JW. J. Org. Chem. 1968; 33: 864
- 29 Ueda T, Saito M, Kato T, Izumiya N. Bull. Chem. Soc. Jpn. 1983; 56: 568
- 30 Lin Q, Blackwell HE. Chem. Commun. 2006; 2884
- 31 Tullberg M, Grøtli M, Luthman K. Tetrahedron 2006; 62: 7484
- 32 Houston DR, Eggelston I, Synstad B, Eijsink VG. H, Van Allten DM. F. Biochem J. 2002; 368: 23
- 33 Montero A, Beierle JM, Olsen CA, Ghadiri MR. J. Am. Chem. Soc. 2009; 131: 3033
- 34 Saxon E, Armstrong JI, Bertozzi CR. Org. Lett. 2000; 2: 2141
- 35 Burés J, Martín M, Urpí F, Vilarrasa J. J. Org. Chem. 2009; 74: 2203
- 36 Mühlberg M, Jaradat DM. M, Kleineweischede R, Papp I, Dechtrirat D, Muth S, Broncel M, Hackenberger CP. R. Bioorg. Med. Chem. 2010; 18: 3679
- 37 David O, Meester WJ. N, Bieräugel H, Schoemaker HA, Siemstra H, van Maarseveen JH. Angew. Chem. Int. Ed. 2003; 42: 4373
- 38 Hutchby M, Houlden CE, Haddow MF, Tyler SN. G, Lloyd-Jones GC, Booker-Milburn KI. Angew. Chem. Int. Ed. 2012; 51: 548
- 39 Schnölzer MR, Alewood P, Jones A, Alewood D, Kent SB. H. Int. J. Peptide Protein Res. 1992; 40: 180
- 40 López-Cobeñas A, Cledera P, Sánchez JD, López-Alvarado P, Ramos MT, Avendaño C, Menéndez JC. Synthesis 2005; 3412
- 41 Furukawa T, Akutagawa T, Funatani H, Uchida T, Hotta Y, Niwa M, Takaya Y. Bioorg. Med. Chem. 2012; 20: 2002
- 42 Chu DT. W, Nordeen CW, Hardy DJ, Swanson RN, Giardina WJ, Pernet AG, Plattner JJ. J. Med. Chem. 1991; 34: 168
- 43 General Procedure for the Solution-Phase Synthesis of 2,5-Diketopiperazines from Azido Peptide Thioesters 1a–c: To a stirred solution of 1a–c (1 mmol) in anhyd CH2Cl2 (4 mL), tributylphosphine (0.37 mL, 1.5 mmol) was added and stirring was continued for 5 min at r.t. H2O (0.1 mL, 5 mmol) was added and stirring was continued again for 5 min. The vial was then subjected to microwave irradiation (50 W, 50 °C, 5 min). Hexanes (4 mL) was added to the reaction to induce crystallization and placed in the freezer. The reaction mixture was filtered and the remaining solid was washed with CH2Cl2 (5 mL) and hexanes (15 mL) and dried under vacuum to yield pure 2a–c. General Procedure for the Solid-Phase Synthesis of 2,5-Diketopiperazines from Supported Azido Peptide Thioesters 1d–f: To a stirred suspension of 1d–f (1 mmol) in anhyd CH2Cl2 (4 mL), tributylphosphine (0.37 mL, 1.5 mmol) was added and stirring was continued for 5 min at r. t. H2O (0.1 mL, 5 mmol) was added and stirring was continued again for 5 min. The vial was then subjected to microwave irradiation (50 W, 50 °C, 5 min). The solids were filtered and washed with CH2Cl2, the remaining solid was treated with hot MeOH and the resulting mother liquor was collected. The mother liquor was cooled in the freezer and the precipitate was collected and dried under vacuum to yield pure 2a–c. (S)-3-Isobutylpiperazine-2,5-dione (2a): Yield: 78% (0.13 g); white microcrystals; mp 248.0–250.0 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 8.26 (br s, 1 H), 7.99 (br s, 1 H), 3.79–3.89 (m, 1 H), 3.56–3.70 (m, 2 H), 1.69–1.84 (m, 1 H), 1.49–1.56 (m, 2 H), 0.89 (d, J = 6.7 Hz, 3 H), 0.87 (d, J = 6.6 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 168.8, 166.3, 52.9, 44.2, 42.1, 23.6, 22.9, 21.8. Anal. Calcd for C8H14N2O2: C, 56.45; H, 8.29; N, 16.46. Found: C, 56.63; H, 8.41; N, 16.28. (S)-3-Benzylpiperazine-2,5-dione (2b): Yield: 74% (0.15 g); white microcrystals; mp 251.0–252.0 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 8.11–8.18 (m, 1 H), 7.84–7.90 (m, 1 H), 7.21–7.32 (m, 3 H), 7.10–7.18 (m, 2 H), 4.02–4.09 (m, 1 H), 3.26–3.42 (m, 2 H), 3.08 (dd, J = 13.5, 4.4 Hz, 1 H), 2.87 (dd, J = 13.5, 4.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 167.4, 166.0, 136.1, 130.2, 128.3, 127.0, 55.7, 43.8. Anal. Calcd for C11H12N2O2: C, 64.49; H, 5.92; N, 13.72. Found: C, 64.43; H, 6.06; N, 13.65. (S)-3-Methylpiperazine-2,5-dione (2c): Yield: 78% (0.10 g); white microcrystals; mp 236–238 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 8.17 (br s, 1 H), 7.99 (br s, 1 H), 3.88 (dq, J = 0.6, 6.9 Hz, 1 H), 3.76 (s, 2 H), 1.30 (d, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 168.8, 166.2, 49.7, 44.5, 18.6. HRMS (ESI): m/z [M + H] calcd for C5H9N2O2: 129.0795; found: 130.1637