Synlett 2012; 23(18): 2657-2662
DOI: 10.1055/s-0031-1290465
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Cyclization of Cyclopropyl-Substituted 1,6-Enynes to 5.7-Bicyclic Trienes or Monocyclic Trienes Depending upon the Leaving Group

Hye Mi Oh
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea   Fax: +82(2)8890310   Email: ykchung@snu.ac.kr
,
So Hee Sim
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea   Fax: +82(2)8890310   Email: ykchung@snu.ac.kr
,
Sang Ick Lee
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea   Fax: +82(2)8890310   Email: ykchung@snu.ac.kr
,
Jisu Kim
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea   Fax: +82(2)8890310   Email: ykchung@snu.ac.kr
,
Young Keun Chung*
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea   Fax: +82(2)8890310   Email: ykchung@snu.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 26 July 2012

Accepted after revision: 15 August 2012

Publication Date:
21 September 2012 (online)


Abstract

Palladium-catalyzed cyclization of cyclopropyl-­substituted 1,6-enynes proceeded in two ways depending on the presence or absence of a leaving group. In the presence of the leaving group, 5.7-bicyclic trienes were obtained as the sole products; in the absence of the leaving group, monocyclic trienes were isolated.

Supporting Information

 
  • References and Notes

    • 1a Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 1b Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 1c Davies HM. L, Antoulinakis EG. Org. React. (N. Y.) 2001; 57: 1
    • 1d Brackmann F, de Meijere A. Chem. Rev. 2007; 107: 4493
    • 1e Gnad F, Reiser O. Chem. Rev. 2003; 103: 1603
    • 1f Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
    • 1g Pellissier H. Tetrahedron 2008; 64: 7041
    • 1h Reichelt A, Martin SF. Acc. Chem. Res. 2006; 39: 433
    • 1i Beaulieu PL, Gillard J, Bailey MD, Boucher C, Duceppe JS, Simoneau B, Wang X.-J, Zhang L, Grozinger K, Houpis I, Farina V, Heimroth H, Krueger T, Schnaubelt J. J. Org. Chem. 2005; 70: 5869

      For reviews, see:
    • 2a Piers E In Comprehensive Organic Synthesis . Vol. 5. Trost BM, Fleming I, Paquette LA. Pergamon Press; Oxford: 1991: 971-998
    • 2b Bronson JJ, Danheiser RL In Comprehensive Organic Synthesis . Vol. 5. Trost BM, Fleming I, Paquette LA. Pergamon Press; Oxford: 1991: 999-1035
    • 2c Hudlicky T, Reed JW. Angew. Chem. Int. Ed. 2010; 49: 4864
    • 2d For recent papers, see: Shimokawa J, Harada T.-A, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2011; 133: 17634
    • 2e Mulzer J, Huisgen R, Arion V, Sustmann R. Helv. Chim. Acta 2011; 94: 1359
    • 2f Wu J, Becerril J, Lian Y, Davies HM. L, Porco JA. Jr, Panek JS. Angew. Chem. Int. Ed. 2011; 50: 5938
    • 2g Wang SC, Troast DM, Conda-Sheridan M, Zuo G, La Garde D, Louie J, Tantillo DJ. J. Org. Chem. 2009; 74: 7822
    • 3a Montero-Campillo MM, Cabaleiro-Lago EM, Rodriguez-Otero J. J. Phys. Chem. A 2008; 112: 9068
    • 3b Wender PA, Pedersen TM, Scanio MJ. C. J. Am. Chem. Soc. 2002; 124: 15154

      For a review, see:
    • 4a Pellissier H. Adv. Synth. Catal. 2011; 353: 189

    • For Ru, see:
    • 4b Trost BM, Shen HC, Horne DB, Toste FD, Steinmetz BG, Koradin C. Chem.–Eur. J. 2005; 11: 2577
    • 4c Trost BM, Waser J, Meyer A. J. Am. Chem. Soc. 2008; 130: 16424
    • 4d Trost BM, Waser J, Meyer A. J. Am. Chem. Soc. 2007; 129: 14556
    • 4e Trost BM, Shen HC, Schulz T, Koradin C, Schirok H. Org. Lett. 2003; 5: 4149
    • 4f Trost BM, Shen HC. Org. Lett. 2000; 2: 2523
    • 4g Trost BM, Toste FD, Shen H. J. Am. Chem. Soc. 2000; 122: 2379

    • For Rh, see:
    • 4h Li Q, Jiang G.-J, Jiao L, Yu Z.-X. Org. Lett. 2010; 12: 1332
    • 4i Gomez FJ, Kamber NE, Deschamps NM, Cole AP, Wender PA, Waymouth RM. Organometallics 2007; 26: 4541
    • 4j Saito A, Ono T, Hanzawa Y. J. Org. Chem. 2006; 71: 6437
    • 5a Zuo G, Louie J. J. Am. Chem. Soc. 2005; 127: 5798
    • 5b Wender PA, Dyckman AJ, Husfeld CO, Kadereit D, Love JA, Rieck H. J. Am. Chem. Soc. 1999; 121: 10442
    • 5c Oppolzer W, Pimm A, Stammen B, Hume WE. Helv. Chim. Acta 1997; 80: 623
    • 5d Kim S.-Y, Kang YK, Chung YK. Chem.–Eur. J. 2010; 16: 5310
    • 6a Liu P, Sirois LE, Cheong PH.-Y, Yu Z.-X, Hartung IV, Rieck H, Wender PA, Houk KN. J. Am. Chem. Soc. 2010; 132: 10127
    • 6b Wender PA, Sirois LE, Stemmler RT, Williams TJ. Org. Lett. 2010; 12: 1604
    • 6c Wender PA, Stemmler RT, Sirois LE. J. Am. Chem. Soc. 2010; 132: 2532
    • 6d Liu P, Cheong PH.-Y, Yu Z.-X, Wender PA, Houk KN. Angew. Chem. Int. Ed. 2008; 47: 3939
    • 6e Yu Z.-X, Cheong PH.-Y, Liu P, Legault CY, Wender PA, Houk KN. J. Am. Chem. Soc. 2008; 130: 2378
    • 6f Wender PA, Haustedt LO, Lim J, Love JA, Williams TJ, Yoon J.-Y. J. Am. Chem. Soc. 2006; 128: 6302
    • 6g Wender PA, Fuji M, Husfeld CO, Love JA. Org. Lett. 1999; 1: 137
    • 6h Wender PA, Glorius F, Husfeld CO, Langkopf E, Love JA. J. Am. Chem. Soc. 1999; 121: 5348
    • 6i Wender PA, Zhang L. Org. Lett. 2000; 2: 2323
    • 7a Kim SM, Park JH, Chung YK. Chem. Commun. 2011; 47: 6719
    • 7b Park JH, Kim E, Chung YK. Org. Lett. 2008; 10: 4719
    • 7c Kim DH, Chung YK, Han JW. Bull. Korean Chem. Soc. 2008; 29: 1224
    • 7d Kim SY, Lee SI, Choi SY, Chung YK. Angew. Chem. Int. Ed. 2008; 47: 4914
  • 8 Spectroscopic Data for 1a: 1H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 8.1 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 2 H), 6.02 (dd, J = 5.4, 11.1 Hz, 1 H), 5.67 (d, J = 11.0 Hz, 1 H), 4.84 (s, 1 H), 4.73 (s, 1 H), 4.34 (d, J = 3.4 Hz, 2 H), 4.21 (d, J = 3.3 Hz, 2 H), 2.43 (s, 5 H), 2.31 (t, J = 7.3 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 143.6, 142.6, 136.8, 134.0, 132.1, 130.7, 129.9, 127.6, 121.9, 114.3, 58.8, 56.8, 34.0, 28.5, 21.6. HRMS (EI): m/z [M]+ Calcd for C17H19NO2S: 301.1137; found: 301.1142.
  • 9 General Procedure: To a flame-dried 10 mL Schlenk flask capped with a rubber septum, dioxane (2 mL), Pd(OAc)2 (5 mol%), and Ph3P (10 mol%) were added under a N2 flow. Compound 1 (0.3 mmol) was added to the flask under N2. The mixture was heated at 90 °C and the progress of the reaction was monitored by TLC. The mixture was cooled to room temperature, filtered, and the solvent was evaporated under reduced pressure. The product was purified by flash chromatography on a silica gel column (n-hexane–ethyl acetate, 10:1).

    • In some transition-metal-catalyzed reactions, the presence of carbon monoxide was helpful to the reaction even though the reaction was not related to the carbonylation, see:
    • 10a Füstner A, Davies PW, Gress T. J. Am. Chem. Soc. 2005; 127: 8244
    • 10b Chatani N, Morimoto T, Murai S. J. Am. Chem. Soc. 1994; 116: 6049
    • 10c Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20146
    • 10d Ozaki T, Nomoto A, Kamiya I, Kawakami J.-i, Ogawa A. Bull. Chem. Soc. Jpn. 2011; 84: 155
  • 11 Persson AK. Å, Bäckvall J.-E. Angew. Chem. Int. Ed. 2010; 49: 4624
    • 12a Tsutsumi K, Yabukami T, Fujimoto K, Kawase T, Morimoto T, Kakiuchi K. Organometallics 2003; 22: 2996
    • 12b Kozawa Y, Mori M. J. Org. Chem. 2003; 68: 8068
  • 13 Zhao S.-C, Ji K.-G, Lu L, He T, Zhou A.-X, Yan R.-L, Ali S, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2012; 77: 2763