Synlett 2012(6): 873-876  
DOI: 10.1055/s-0031-1290617
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Indium-Catalyzed Henry-Type Reaction of Aldehydes with Bromonitro­alkanes

Raquel G. Soengas*, Artur M. S. Silva*
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: artur.silva@ua.pt; e-Mail: rsoengas@ua.pt;
Further Information

Publication History

Received 10 January 2012
Publication Date:
15 March 2012 (online)

Abstract

An economical method to perform the addition of bromonitroalkanes to aldehydes using zinc in the presence of a catalytic amount of indium is established. This procedure affords the corresponding nitroalkanols in good yields and can be easily scaled up to preparative amounts. This indium-catalyzed Henry reaction performs better than the classic base-catalyzed reaction in terms of yields and substrate scope and avoids the use of stoichiometric amounts of the expensive indium powder.

    References and Notes

  • For reviews on indium chemistry, see:
  • 1a Cintas P. Synlett  1995,  1089 
  • 1b Li CJ. Tetrahedron  1996,  52:  5643 
  • 1c Marshall JA. Chemtracts: Org. Chem.  1997,  10:  481 
  • 1d Li CJ. In Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes   Anastas P. Williamson TC. Oxford University Press; New York: 1998.  p.Chap. 14 
  • 1e Paquette LA. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes   Anastas P. Williamson TC. Oxford University Press; New York: 1998.  p.Chap. 15 
  • 1f Li C.-J. Chan T.-H. Tetrahedron  1999,  55:  11149 
  • 1g Ranu BC. Eur. J. Org. Chem.  2000,  2347 
  • 1h Podlech J. Maier TC. Synthesis  2003,  633 
  • 2a Araki S. Ito H. Butsugan Y. J. Org. Chem.  1988,  53:  1831 
  • 2b Araki S. Kamei T. Hirashita T. Yamamura H. Kawai M. Org. Lett.  2000,  2:  847 
  • 2c Tan K.-T. Chang S.-S. Cheng H.-S. Loh T.-P. J. Am. Chem. Soc.  2003,  125:  2958 
  • 3 Isaac MB. Chan T.-H. J. Chem. Soc., Chem. Commun.  1995,  1003 
  • 4 Augé J. Lubin-Germain N. Seghrouchni L. Tetrahedron Lett.  2002,  43:  5255 
  • 5 Hirashita T. Kinoshita K. Yamamura H. Kawai M. Araki S. J. Chem. Soc., Perkin Trans. 1  2000,  825 
  • 6 Araki S. Butsugan Y. J. Chem. Soc., Chem. Commun.  1989,  1286 
  • 7a Soengas RG. Estévez AM. Eur. J. Org. Chem.  2010,  5190 
  • 7b Soengas RG. Estévez AM. Tetrahedron Lett.  2012,  53:  570 
  • 7c

    Soengas, R. G.; Rodríguez-Solla, H.; Alvaredo, N. in preparation.

  • 8a Aluminum, zinc, or manganese as regenerant: Araki S. Jin S.-J. Idou Y. Butsugan Y. Bull. Chem. Soc. Jpn.  1992,  65:  1736 
  • 8b Loh T.-P. Li X.-R. Angew. Chem., Int. Ed. Engl.  1997,  36:  980 
  • 8c Augé J. Lubin-Germain N. Thiaw-Woaye A. Tetrahedron Lett.  1999,  40:  9245 
  • 8d Augé J. Lubin-Germain N. Marque S. Seghrouchni L. J. Organomet. Chem.  2003,  679:  79 
  • 8e Steurer S. Podlech J. Adv. Synth. Catal.  2001,  343:  251 
  • 8f Preite MD. Jorquera-Geroldi HA. Pérez-Carvajal A. ARKIVOC  2011,  (vii):  380 
  • 14a Felkin H. Prudent N. Tetrahedron Lett.  1968,  9:  2199 
  • 14b Anh NT. Eisenstein O. Lefour J.-M. Dau M.-E.
    J. Am. Chem. Soc.  1973,  95:  6146 
  • 14c Anh NT. Eisenstein O. Nouv. J. Chim.  1977,  1:  61 
9

Sigma Aldrich on-line catalogue.

10

Physical Data of 2-Nitro-1-phenylethanol (3a) The aqueous workup gave 3a as a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 2.87 (br s, 1 H, OH), 4.53-4.61 (m, 2 H, H-2), 5.29-5.50 (m, 1 H, H-1), 7.41-7.43 (m, 5 H, Ph) ppm.

11

General Procedure for the Henry-Type Addition of Bromoalkanes 2a-g to Aldehydes 1a-g
The appropriate bromonitroalkane 2a-g (1.5 mmol) was added to a suspension of activated zinc powder (10 mmol) and indium powder (0.12 mmol) in THF (2 mL), and the mixture was sonicated for 20 min. The corresponding aldehyde 1a-g (1 mmol) was then added, and sonication was continued for a further 4 h. The reaction mixture was quenched with sat. aq NaHCO3 (15 mL) and extracted with Et2O (3 × 30 mL). The combined organic layers were dried over MgSO4, filtered, and the solvent was evaporated in vacuo to obtain the corresponding 2-nitroalkanols.

12

As examples of the obtained nitroalkanols, we present the physical data of compounds 3d,f-h.
1-(4-Methoxyphenyl)-2-methyl-2-nitropropan-1-ol (3d) The aqueous workup afforded 3d as a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 1.41 and 1.55 (2 s, 2 × 3 H, 2 CH3), 3.79 (s, 3 H, OCH3), 5.23 (br s, 1 H, OH), 5.28 (s, 1 H, H-1), 6.88 (d, 2 H, H-3,5 of Ar), 7.28 (d, 2 H, H-2,6 of Ar) ppm.
2,5-Dimethyl-2-nitrohexan-3-ol (3f) After the aqueous workup 3f was obtained as a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 0.89-1.01 (m, 2 × 3 H, 2 CH3), 1.29-1.34 (m, 2 H, CH2), 1.42 and 1.53 (2 s, 2 × 3 H, 2 CH3), 1.79-1.83 (m, 1 H), 3.66-3.72 (m, 1 H) ppm.
1-Cyclohexyl-2-nitropropan-1-ol (3g) The aqueous workup gave 3g as a 40:60 mixture of syn/anti isomers. ¹H NMR (400 MHz, CDCl3): 1.18-1.25 (m, 6 × 2 H, 6 CH2, syn + anti), 1.52-1.56 (m, 2 × 3 H, 2 CH3, syn + anti), 1.66-1.78 (m, 4 × 2 H, 2 × 1 H, 4 CH2, 2 CH, syn + anti), 3.67 (dd, J = 4.4, 7.3 Hz, 1 H, H-2, syn), 3.94 (dd, J = 3.3, 8.2 Hz, 1 H, H-2, anti), 4.60-4.76 (m, 2 H, H-1, syn + anti) ppm.

13

Physical Data of 1,2:3,4-Di- O -isopropylidene-6-( R )-(2,2-dimethyl-5-nitro-1,3-dioxan-5-yl)-β- d -galacto-heptopyranose (3h) After aqueous workup and column chromatography (EtOAc-hexane = 1:2) 3h was obtained as a colorless oil (70%). ¹H NMR (300 MHz, CDCl3): δ = 1.33, 1.35, 1.36, 1.45, 1.46 and 1.59 (6 s, 6 × 3H, CH3), 3.16 (d, 1 H, J = 7.1 Hz, OH), 3.92 (dd, 1 H, J = 8.9, 1.9 Hz), 4.03-4.37 (m, 5 H), 4.52-4.71 (m, 3 H), 5.50 (d, 1 H, J = 5.1 Hz, H-1) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 19.5, 24.3, 25.6, 25.8 and 27.3 (6 × CH3), 61.1 and 62.7 (2 × CH2), 66.6, 70.0, 70.5, 70.6 and 70.8 (5 × CH), 89.9 (CH), 96.1, 98.9, 109.1 and 109.6 (4 × C) ppm.