Subscribe to RSS
DOI: 10.1055/s-0031-1290617
Indium-Catalyzed Henry-Type Reaction of Aldehydes with Bromonitroalkanes
Publication History
Publication Date:
15 March 2012 (online)
Abstract
An economical method to perform the addition of bromonitroalkanes to aldehydes using zinc in the presence of a catalytic amount of indium is established. This procedure affords the corresponding nitroalkanols in good yields and can be easily scaled up to preparative amounts. This indium-catalyzed Henry reaction performs better than the classic base-catalyzed reaction in terms of yields and substrate scope and avoids the use of stoichiometric amounts of the expensive indium powder.
Key words
Henry reaction - bromonitroalkanes - indium - catalytic - nitroalkanols
- For reviews on indium chemistry, see:
-
1a
Cintas P. Synlett 1995, 1089 -
1b
Li CJ. Tetrahedron 1996, 52: 5643 -
1c
Marshall JA. Chemtracts: Org. Chem. 1997, 10: 481 -
1d
Li CJ. In Green Chemistry: Frontiers in Benign Chemical Syntheses and ProcessesAnastas P.Williamson TC. Oxford University Press; New York: 1998. p.Chap. 14 -
1e
Paquette LA. Green Chemistry: Frontiers in Benign Chemical Syntheses and ProcessesAnastas P.Williamson TC. Oxford University Press; New York: 1998. p.Chap. 15 -
1f
Li C.-J.Chan T.-H. Tetrahedron 1999, 55: 11149 -
1g
Ranu BC. Eur. J. Org. Chem. 2000, 2347 -
1h
Podlech J.Maier TC. Synthesis 2003, 633 -
2a
Araki S.Ito H.Butsugan Y. J. Org. Chem. 1988, 53: 1831 -
2b
Araki S.Kamei T.Hirashita T.Yamamura H.Kawai M. Org. Lett. 2000, 2: 847 -
2c
Tan K.-T.Chang S.-S.Cheng H.-S.Loh T.-P. J. Am. Chem. Soc. 2003, 125: 2958 - 3
Isaac MB.Chan T.-H. J. Chem. Soc., Chem. Commun. 1995, 1003 - 4
Augé J.Lubin-Germain N.Seghrouchni L. Tetrahedron Lett. 2002, 43: 5255 - 5
Hirashita T.Kinoshita K.Yamamura H.Kawai M.Araki S. J. Chem. Soc., Perkin Trans. 1 2000, 825 - 6
Araki S.Butsugan Y. J. Chem. Soc., Chem. Commun. 1989, 1286 -
7a
Soengas RG.Estévez AM. Eur. J. Org. Chem. 2010, 5190 -
7b
Soengas RG.Estévez AM. Tetrahedron Lett. 2012, 53: 570 -
7c
Soengas, R. G.; Rodríguez-Solla, H.; Alvaredo, N. in preparation.
-
8a Aluminum,
zinc, or manganese as regenerant:
Araki S.Jin S.-J.Idou Y.Butsugan Y. Bull. Chem. Soc. Jpn. 1992, 65: 1736 -
8b
Loh T.-P.Li X.-R. Angew. Chem., Int. Ed. Engl. 1997, 36: 980 -
8c
Augé J.Lubin-Germain N.Thiaw-Woaye A. Tetrahedron Lett. 1999, 40: 9245 -
8d
Augé J.Lubin-Germain N.Marque S.Seghrouchni L. J. Organomet. Chem. 2003, 679: 79 -
8e
Steurer S.Podlech J. Adv. Synth. Catal. 2001, 343: 251 -
8f
Preite MD.Jorquera-Geroldi HA.Pérez-Carvajal A. ARKIVOC 2011, (vii): 380 -
14a
Felkin H.Prudent N. Tetrahedron Lett. 1968, 9: 2199 -
14b
Anh NT.Eisenstein O.Lefour J.-M.Dau M.-E.
J. Am. Chem. Soc. 1973, 95: 6146 -
14c
Anh NT.Eisenstein O. Nouv. J. Chim. 1977, 1: 61
References and Notes
Sigma Aldrich on-line catalogue.
10Physical Data of 2-Nitro-1-phenylethanol (3a) The aqueous workup gave 3a as a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 2.87 (br s, 1 H, OH), 4.53-4.61 (m, 2 H, H-2), 5.29-5.50 (m, 1 H, H-1), 7.41-7.43 (m, 5 H, Ph) ppm.
11
General Procedure
for the Henry-Type Addition of Bromoalkanes 2a-g to Aldehydes
1a-g
The appropriate bromonitroalkane 2a-g (1.5
mmol) was added to a suspension of activated zinc powder (10 mmol) and
indium powder (0.12 mmol) in THF (2 mL), and the mixture was sonicated
for 20 min. The corresponding aldehyde 1a-g (1 mmol) was then added, and sonication
was continued for a further 4 h. The reaction mixture was quenched
with sat. aq NaHCO3 (15 mL) and extracted with Et2O
(3 × 30 mL). The combined organic layers
were dried over MgSO4, filtered, and the solvent was
evaporated in vacuo to obtain the corresponding 2-nitroalkanols.
As examples of the obtained nitroalkanols,
we present the physical data of compounds 3d,f-h.
1-(4-Methoxyphenyl)-2-methyl-2-nitropropan-1-ol
(3d)
The aqueous workup afforded 3d as
a yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 1.41
and 1.55 (2 s, 2 × 3 H, 2 CH3), 3.79
(s, 3 H, OCH3), 5.23 (br s, 1 H, OH), 5.28 (s, 1 H, H-1), 6.88
(d, 2 H, H-3,5 of Ar), 7.28 (d, 2 H, H-2,6 of Ar) ppm.
2,5-Dimethyl-2-nitrohexan-3-ol (3f)
After
the aqueous workup 3f was obtained as a
yellow oil.
¹H NMR (300 MHz, CDCl3): δ = 0.89-1.01
(m, 2 × 3 H, 2 CH3), 1.29-1.34
(m, 2 H, CH2), 1.42 and 1.53 (2 s, 2 × 3
H, 2 CH3), 1.79-1.83 (m, 1 H), 3.66-3.72
(m, 1 H) ppm.
1-Cyclohexyl-2-nitropropan-1-ol
(3g)
The aqueous workup gave 3g as
a 40:60 mixture of syn/anti isomers. ¹H
NMR (400 MHz, CDCl3): 1.18-1.25 (m, 6 × 2 H,
6 CH2, syn + anti), 1.52-1.56 (m, 2 × 3
H, 2 CH3, syn + anti), 1.66-1.78 (m, 4 × 2
H, 2 × 1 H, 4 CH2, 2 CH, syn + anti), 3.67 (dd, J = 4.4,
7.3 Hz, 1 H, H-2, syn), 3.94 (dd, J = 3.3, 8.2
Hz, 1 H, H-2, anti), 4.60-4.76
(m, 2 H, H-1, syn + anti) ppm.
Physical Data of 1,2:3,4-Di- O -isopropylidene-6-( R )-(2,2-dimethyl-5-nitro-1,3-dioxan-5-yl)-β- d -galacto-heptopyranose (3h) After aqueous workup and column chromatography (EtOAc-hexane = 1:2) 3h was obtained as a colorless oil (70%). ¹H NMR (300 MHz, CDCl3): δ = 1.33, 1.35, 1.36, 1.45, 1.46 and 1.59 (6 s, 6 × 3H, CH3), 3.16 (d, 1 H, J = 7.1 Hz, OH), 3.92 (dd, 1 H, J = 8.9, 1.9 Hz), 4.03-4.37 (m, 5 H), 4.52-4.71 (m, 3 H), 5.50 (d, 1 H, J = 5.1 Hz, H-1) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 19.5, 24.3, 25.6, 25.8 and 27.3 (6 × CH3), 61.1 and 62.7 (2 × CH2), 66.6, 70.0, 70.5, 70.6 and 70.8 (5 × CH), 89.9 (CH), 96.1, 98.9, 109.1 and 109.6 (4 × C) ppm.