Synlett 2012(7): 990-1006  
DOI: 10.1055/s-0031-1290657
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Copper-Catalyzed Cycloisomerizations of Enynols and Their Esters

Charles Fehr*
Firmenich SA, Corporate R&D Division, P. O. Box 239, 1211 Geneva 8, Switzerland
Fax: +41(22)7803334; e-Mail: charles.fehr@firmenich.com; e-Mail: cgfehr@bluewin.ch;
Further Information

Publication History

Received 11 September 2011
Publication Date:
05 April 2012 (online)

Abstract

We have discovered that several platinum- or gold-catalyzed cycloisomerization reactions can also be catalyzed by copper. This Account discusses our new findings, the complementarity of copper-catalysis, and its application to the synthesis of (-)-cubebol, (-)-β-santalol, and other fragrance compounds.

1 Introduction

2 Cycloisomerization of 5-en-1-yn-3-ols: The Cyclopropanation Pathway

3 Cycloisomerization of 5-En-1-yn-3-ol-Derived Esters and Synthesis of (-)-Cubebol

4 Cycloisomerization of a 6-En-1-yn-3-ol and Its Corresponding Acetate towards the Synthesis of Thujopsanone-Like Compounds

5 Cyclization-Fragmentations of 5-En-1-yn-3-ols

6 Synthesis of (-)-β-Santalol by Cyclization-Fragmentation of a 5-En-1-yn-3-ol

7 Reactivity of 6-En-1-yn-4-ols: Cyclization-Fragmentation vs. Metathesis Reaction

8 Conclusions and Outlook

    References and Notes

  • Recent reviews on enyne cycloisomerizations:
  • 1a Nolan SP. Acc. Chem. Res.  2011,  44:  91 
  • 1b Echavarren AM. Jiménez-Nunez E. Top. Catal.  2010,  53:  924 
  • 1c Fürstner A. Chem. Soc. Rev.  2009,  38:  3208 
  • 1d Shen HC. Tetrahedron  2008,  64:  7847 
  • 1e Jiménez-Nunez E. Echavarren AM. Chem. Rev.  2008,  108:  3326 
  • 1f Michelet V. Toullec PY. Genêt J.-P. Angew. Chem. Int. Ed.  2008,  47:  4268 
  • 1g Crone B. Kirsch SF. Chem. Eur. J.  2008,  14:  3514 
  • 1h Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2007,  46:  3410 
  • 1i Jiménez-Nunez E. Echavarren AM. Chem. Commun.  2007,  333 
  • 1j Gorin D. Toste JD. Nature (London)  2007,  446:  395 
  • 1k Marion N. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2750 
  • 1l Marco-Contelles J. Soriano E. Chem. Eur. J.  2007,  13:  1350 
  • 1m Zhang L. Sun J. Kozmin SA. Adv. Synth. Catal.  2006,  348:  2271 
  • 2a Blaszykowski C. Harrak Y. Brancour C. Nakama K. Dhimane A.-L. Fensterbank L. Malacria M. Synthesis  2007,  2037 
  • 2b Soriano E. Marco-Contelles J. J. Org. Chem.  2007,  72:  2651 
  • 2c Pt and Cu: Barluenga J. Riesgo L. Vicente R. Lopez LA. Tomas M. J. Am. Chem. Soc.  2007,  129:  7772 
  • 2d Anjum S. Marco-Contelles J. Tetrahedron  2005,  61:  4793 
  • 2e Soriano E. Ballesteros P. Marco-Contelles J. Organometallics  2005,  24:  3182 
  • 2f Soriano E. Marco-Contelles J. J. Org. Chem.  2005,  70:  9345 
  • 2g Blaszykowski C. Harrak Y. Gonçalves M.-H. Cloarec J.-M. Dhimane A.-L. Fensterbank L. Malacria M. Org. Lett.  2004,  6:  3771 
  • 2h Harrak Y. Blaszykowski C. Bernard M. Cariou K. Mainetti E. Mouriès V. Dhimane A.-L. Fensterbank L. Malacria M. J. Am. Chem. Soc.  2004,  126:  8656 
  • 2i Mamane V. Gress T. Krause H. Fürstner A. J. Am. Chem. Soc.  2004,  126:  8654 
  • 3a Garayalde D. Krüger K. Nevado C. Angew. Chem. Int. Ed.  2011,  50:  911 
  • 3b Harrak Y. Makhlouf M. Azzaro S. Mainetti E. Romero JML. Cariou K. Gandon V. Goddard J.-P. Malacria M. Fensterbank L. J. Organomet. Chem.  2011,  696:  388 
  • 3c Marion N. Lemière G. Correa A. Costabile C. Ramon RS. Moreau X. de Frémont P. Dahmane R. Hours A. Lesage D. Tabet J.-C. Goddard J.-P. Gandon V. Cavallo L. Fensterbank L. Malacria M. Nolan SP. Chem. Eur. J.  2009,  15:  3243 
  • 3d Watson IDG. Ritter S. Toste FD. J. Am. Chem. Soc.  2009,  131:  2056 
  • 3e Au and Pt: Moreau X. Goddard J.-P. Bernard M. Lemière G. López-Romero JM. Mainetti E. Marion N. Mouriès V. Thorimbert S. Fensterbank L. Malacria M. Adv. Synth. Catal.  2008,  350:  43 
  • 3f Fürstner A. Schlecker A. Chem. Eur. J.  2008,  14:  9181 
  • 3g Correa A. Marion N. Fensterbank L. Malacria M. Nolan SP. Cavallo L. Angew. Chem. Int. Ed.  2008,  47:  718 
  • 3h Lemière G. Gandon V. Cariou K. Fukuyama T. Dhimane A.-L. Fensterbank L. Malacria M. Org. Lett.  2007,  9:  2207 
  • 3i Au and Pt: Fürstner A. Hannen P. Chem. Eur. J.  2006,  12:  3006 
  • 3j Buzas A. Gagosz F. J. Am. Chem. Soc.  2006,  128:  12614 
  • 3k Cho EJ. Kim M. Lee D. Org. Lett.  2006,  8:  5413 
  • 3l Johansson MJ. Gorin DJ. Staben ST. Toste FD. J. Am. Chem. Soc.  2005,  127:  18002 
  • 3m Gagosz F. Org. Lett.  2005,  7:  4129 
  • 3n Luzung MR. Markham JP. Toste FD. J. Am. Chem. Soc.  2004,  126:  10858 
  • 3o See also: Grisé CM. Rodrigue EM. Barriault L. Tetrahedron  2008,  64:  797 
  • 3p For the seminal work on the development of [(PR3)AuNTf2] catalysts, see: Mézailles N. Richard L. Gagosz F. Org. Lett.  2005,  7:  4133 
  • 4 Fehr C. Farris I. Sommer H. Org. Lett.  2006,  8:  1839 
  • 5a Fehr C. Galindo J. Angew. Chem. Int. Ed.  2006,  45:  2901 
  • 5b Fehr C. Winter B. Magpantay I. Chem. Eur. J.  2009,  15:  9773 
  • 6 Fehr C. Farris I. Angew. Chem. Int. Ed.  2006,  45:  6904 
  • 7 Chabardes P. Tetrahedron Lett.  1988,  29:  6253 
  • 8 Ohloff G. Strickler H. Willhalm B. Borer C. Hinder M. Helv. Chim. Acta  1970,  53:  623 
  • 9 Hatsui T. Suzuki N. Takeshita H. Chem. Lett.  1985,  639 
  • 10 Fehr C. Vuagnoux M. Buzas A. Arpagaus J. Sommer H. Chem. Eur. J.  2011,  17:  6214 
  • 11 For the preparation of [(IPr)CuNTf2] [kindly obtained by Professor Steven P. Nolan (University of St. Andrews, St. Andrews, UK)], see: Fortman GC. Slawin AMZ. Nolan SP. Organometallics  2010,  29:  3966 
  • 12a Luzung MR. Mauleon P. Toste FD. J. Am. Chem. Soc.  2007,  129:  12402 
  • 12b Alcaide B. Almendros P. Aragoncillo C. Chem. Soc. Rev.  2010,  39:  783 
  • 13 Saucy G. Marbet R. Lindlar H. Isler O. Helv. Chim. Acta  1959,  42:  1945 
  • 14 Vedejs E. Cammers-Goodwin A. J. Org. Chem.  1994,  59:  7541 
  • 15 Fehr C. Vuagnoux M. Sommer H. Chem. Eur. J.  2011,  17:  3832 
  • 16 Bluthe N. Goré J. Malacria M. Tetrahedron  1986,  42:  1333 
  • 17 Shapiro ND. Toste FD. Synlett  2010,  675 
  • (-)-β-Santalol (very strong sandalwood odor) and (+)-β-santalol (odorless) by chiral auxiliary-based synthesis:
  • 18a Krotz A. Helmchen G. Liebigs Ann. Chem.  1994,  601 
  • 18b Krotz A. Helmchen G. Tetrahedron: Asymmetry  1990,  1:  537 
  • (±)-β-santalol:
  • 18c Solas D. Wolinsky J. J. Org. Chem.  1983,  48:  1988 
  • 18d Monti H. Corriol C. Bertrand M. Tetrahedron Lett.  1982,  23:  5539 
  • 18e Sato K. Miyamoto O. Inoue S. Honda K. Chem. Lett.  1981,  1183 
  • 18f Christensen PA. Willis BJ. J. Org. Chem.  1979,  44:  2012 
  • 18g Kretschmar HC. Erman WF. Tetrahedron Lett.  1970,  11:  41 
  • 19 Fehr C, and Vuagnoux M. inventors; WO  200914178. 
  • 20 Baumann M, and Hoffmann W. inventors; EP  0010213. For a long synthesis of (±)-83 (8 steps, 13% yield) of unspecified configuration and lacking spectral data, see: ; Chem. Abstr. 1980, 93, 185844
  • 21 Corey EJ. Yamamoto H. J. Am. Chem. Soc.  1970,  92:  226 
  • 22 Fehr C. Magpantay I. Arpagaus J. Marquet X. Vuagnoux M. Angew. Chem. Int. Ed.  2009,  48:  7221 
  • 23 Hayashi Y. Samanta S. Gotoh H. Ishikawa H. Angew. Chem. Int. Ed.  2008,  47:  6634 
  • 25 Fehr C. Magpantay I. Vuagnoux M. Dupau P. Chem. Eur. J.  2011,  17:  1257 
  • For a related early study of Pt-catalyzed metathesis reactions leading to bridged bicyclic systems, see:
  • 27a Fürstner A. Stelzer F. Szillat H. J. Am. Chem. Soc.  2001,  123:  11863 
  • 27b Fürstner A. Szillat H. Gabor B. Mynott R. J. Am. Chem. Soc.  1998,  120:  8305 
  • 29 Note added in proof: Gronnier C. Kramer S. Odabachian Y. Gagosz F. J. Am. Chem. Soc.  2012,  134:  828 
  • For the use of Cu(I) in other types of reactions based on acetylene activation, see:
  • 30a Dudnik AS. Chernyak N. Gevorgyan V. Aldrichimica Acta  2010,  43:  37 
  • 30b Schwier T. Sromek AW. Yap DML. Chernyak D. Gevorgyan V. J. Am. Chem. Soc.  2007,  129:  9868 
  • 30c Montel S. Bouyssi D. Balme G. Adv. Synth. Catal.  2010,  352:  2315 
24

Surprisingly, 90 and to a larger extent 91 showed a diminished ee as compared to 88 and 89, although the dr remained the same. Possibly, 90 and 91 undergo a thermal 1,2-H shift.

26

Migration of the cyclopropane C-C bond opposite to the C-C=M bond in 99b (Scheme  [²7] ) and 105b (Scheme  [²8] ) leads to the same metathesis product. These reactions proceed via nonclassical cations, but for clarity we prefer not to draw partial bonds.

28

Kindly performed by Professor M. Santelli (University of Aix-Marseille, France).