Subscribe to RSS
DOI: 10.1055/s-0031-1290749
A New Route to N1-Substituted Uracil Derivatives Using Hypervalent Iodine
Publication History
Received: 21 February 2012
Accepted: 24 February 2012
Publication Date:
22 March 2012 (online)

Abstract
In continuation of our previous study, oxidative coupling reactions of uracil with allylsilane or enol ethers were examined using diacetoxyiodobenzene. The reaction of persilylated uracil with 3,4-dihydro-2H-pyran in the presence of TMSOTf and PhI(OAc)2 resulted in the formation of a dihydropyranyluracil derivative, although the yield was low. In an extension of the oxidative coupling reaction, a novel glycosylation reaction using glycal derivatives as substrates was also developed. The treatment of persilylated uracil and 3,4-dihydro-2H-pyran with (PhSe)2 and PhI(OAc)2 in the presence of a catalytic amount of TMSOTf gave a 2,3-anti-derivative of 1-(3-phenylselanyltetrahydropyran-2-yl)uracil stereoselectively and in good yield.
-
References
- 1a Fan X, Wang Y, Qu Y, Xu H, He Y, Zhang X, Wang J. J. Org. Chem. 2011; 76: 982
- 1b Peacock H, Maydanovych O, Beal PA. Org. Lett. 2010; 12: 1044
- 1c Plant A, Thompson P, William DM. J. Org. Chem. 2009; 74: 4870
- 1d Smith DB, Kalayanov G, Sund C, Winqvist A, Pinho P, Maltseva T, Morisson V, Leveque V, Rajyaguru S, Le PogamS, Najera I, Benkestock K, Zhou X.-X, Maag H, Cammack N, Martin JA, Swallow S, Johansson NJ, Klumpp K, Smith M. J. Med. Chem. 2009; 52: 219
- 1e Spitale RC, Heller MG, Pelly AJ, Wedekind JE. J. Org. Chem. 2007; 72: 8551
- 2a Dalençon S, Youcef RA, Pipelier M, Maisonneuve V, Dubreuil D, Huet F, Legoupy S. J. Org. Chem. 2011; 76: 8059
- 2b Saneyoshi H, Deschamps JR, Marquez VE. J. Org. Chem. 2010; 75: 7659
- 2c Jiang MX.-W, Jin B, Gage JL, Priour A, Savela G, Miller MJ. J. Org. Chem. 2006; 71: 4164
- 3a Huang Q, Herdewijin P. J. Org. Chem. 2011; 76: 3742
- 3b Reddy PG, Chun B.-W, Zhang H.-R, Rachakonda S, Ross BS, Sofia MJ. J. Org. Chem. 2011; 76: 3782
- 3c Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA, Prakash TP, Migawa MT, Bhat B, Swayze EE. J. Org. Chem. 2010; 75: 1569
- 3d Prévost M, St-Jean O, Guindon Y. J. Am. Chem. Soc. 2010; 132: 12433
- 3e Stauffer CS, Datta A. J. Org. Chem. 2008; 73: 4166
- 3f Sabatino D, Damha MJ. J. Am. Chem. Soc. 2007; 129: 8259
- 3g Jean-Baptiste L, Yemets S, Legay R, Lequeux T. J. Org. Chem. 2006; 71: 2352
- 3h Neogi A, Majhi TP, Mukhopadhyay R, Chattopadyay P. J. Org. Chem. 2006; 71: 3291
- 3i Gagneron J, Gosselin G, Mathé C. J. Org. Chem. 2005; 70: 6891
- 4a Yoshimura Y, Yamazaki Y, Saito Y, Natori Y, Imamichi T, Takahata H. Bioorg. Med. Chem. Lett. 2011; 21: 3313
- 4b Yoshimura Y, Yamazaki Y, Saito Y, Takahata H. Tetrahedron 2009; 65: 9091
- 4c Yoshimura Y, Yamazaki Y, Kawahata M, Yamaguchi K, Takahata H. Tetrahedron Lett. 2007; 48: 4519
- 4d Yoshimura Y, Kuze T, Ueno M, Komiya F, Haraguchi K, Tanaka H, Kano F, Yamada K, Asami K, Kaneko N, Takahata H. Tetrahedron Lett. 2006; 47: 591
- 4e Yoshimura Y, Kitano K, Yamada K, Satoh H, Watanabe M, Miura S, Sakata S, Sasaki T, Matsuda A. J. Org. Chem. 1997; 62: 3140
- 4f Yoshimura Y, Kitano K, Satoh H, Watanabe M, Miura S, Sakata S, Sasaki T, Matsuda A. J. Org. Chem. 1996; 61: 822
- 5a Yoshimura Y, Asami K, Imamichi T, Kuroda T, Shiraki K, Tanaka H, Takahata H. J. Org. Chem. 2010; 75: 4161
- 5b Yoshimura Y, Asami K, Matsui H, Tanaka H, Takahata H. Org. Lett. 2006; 8: 6015
- 6 Yoshimura Y, Ohta M, Imahori T, Imamichi T, Takahata H. Org. Lett. 2008; 10: 3449
- 7 During the course of our investigation, the intramolecular oxidative C–N bond forming reaction using Cu(OTf)2 and PhI(OAc)2 has been reported: Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
- 8 The H-H COSY spectrum of 10d and 10e showed that there is no cross peak corresponding to the correlation between H1′ and H2′ of 10e. This revealed that a dihedral angle of H1′-C1′-C2′-H2′ should be around 90°. From this result, 10e was determined to be a 1′,2′-trans-isomer
- 9 The C2-acylglycosylation of glycals with PhI(OCOR)2 in the presence of Et2O·BF3 was reported to proceed via a C2-phenyliodonium (IIII) intermediate: Shi L, Kim Y.-J, Gin DY. J. Am. Chem. Soc. 2001; 123: 6939
- 10 Singh FV, Wirth T. Org. Lett. 2011; 13: 6504
- 11a Litjens RE. J. N, den Heeten R, Timmer MS. M, Overkleeft HS, van der Marel GA. Chem.–Eur. J. 2005; 11: 1010
- 11b Jiaang W.-T, Chang M.-Y, Tseng P.-H, Chen S.-T. Tetrahedron Lett. 2000; 41: 3127
- 11c Santoyo-Gonzalez F, Calvo-Flores FG, García-Mendoza P, Hernández-Mateo F, Isac-García J, Robles-Díaz R. J. Org. Chem. 1993; 58: 6122
- 12a De Clercq E. Biochem. Pharmacol. 2011; 82: 99
- 12b Esté JA, Cihlar T. Antiviral Res. 2010; 85: 25
- 12c Meadows DC, Gervey-Hague J. ChemMedChem 2006; 1: 16
- 12d Imamichi T. Curr. Pharm. Design 2004; 10: 4039
- 13 Imanieh H, Quayle P, Voaden M, Conway J. Tetrahedron Lett. 1992; 33: 543
- 14 The stereochemistries of 15d,e were determined by NOE experiments: 15d showed a NOE (3.1%) between H-6 of the uracil ring and one of the methylene protons on the siloxymethyl group on C6 of tetrahydropyran. On the other hand, in the case of 15e, NOEs (9.9% and 2.3%) were found between the H-2 of tetrahydropyran (anomeric proton) and the methylene protons of the siloxymethyl group. The stereochemistries of 15f,g were estimated by comparison with the 1H NMR spectra of 15d,e
Recent reports:
Recent reports:
Recent reports:
In contrast, the reaction of glycal derivatives with (PhSe)2, PhI(OAc)2, and NaN3 gave 2-azido-1-phenylseleno-glycoside selectively:
For example, see: