Synthesis 2012; 44(10): 1521-1525
DOI: 10.1055/s-0031-1290806
special topic
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidative Trifluoromethylation of H-Phospho­nates Using Trimethyl(trifluoromethyl)silane

Lingling Chu
a   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
,
Feng-Ling Qing*
a   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b   College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, P. R. of China, Fax: +86(21)64166128   Email: flq@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 16 February 2012

Accepted after revision: 05 March 2012

Publication Date:
11 April 2012 (online)


Abstract

Copper-catalyzed aerobic oxidative trifluoromethylation of readily accessible H-phosphonates was demonstrated for the first time. This method not only provides an alternative method for the facile synthesis of a series of biologically important CF3-phosphonates, but also demonstrates the first example of the efficient construction of a P–CF3 bond via transition-metal catalysis.

Supporting Information

 
  • Reference

    • For selected reviews, see:

    • 1a Kirsch P. Modern Fluoroorganic Chemistry. Wiley-VCH; Weinheim: 2004
    • 1b Uneyama K. Organofluorine Chemistry. Blackwell; Oxford: 2006
    • 1c Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
    • 1d Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1e Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 1f Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • For reviews on trifluoromethylations, see:

    • 2a Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 2b Prakash GK. S, Chaacko S. Curr. Opin. Drug Discovery Dev. 2008; 11: 793
    • 2c Shibata N, Mizuta S, Kawai H. Tetrahedron: Asymmetry 2008; 19: 2633
    • 2d Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2e Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • Recent examples for transition-metal-mediated or -catalyzed trifluoromethylations, see:

    • 3a Grushin VV, Marshall WJ. J. Am. Chem. Soc. 2006; 128: 12644
    • 3b Dubinina GG, Furutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
    • 3c Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
    • 3d Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 2878
    • 3e Ye Y, Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 14682
    • 3f Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
    • 3g Samant BS, Kabalka GW. Chem. Commun. 2011; 47: 7236
    • 3h Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
    • 3i Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
    • 3j Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
    • 3k Liu T, Shen Q. Org. Lett. 2011; 13: 2342
    • 3l Zhang C.-P, Cai J, Zhou C.-B, Wang X.-P, Zheng X, Gu Y.-C, Xiao J.-C. Chem. Commun. 2011; 47: 9516
    • 3m Knauber T, Arikan F, Röschenthaler G.-V, Gooßen LJ. Chem.–Eur. J. 2011; 17: 2689
    • 3n Weng Z, Lee R, Jia W, Yuan Y, Wang W, Feng X, Huang K.-W. Organometallics 2011; 30: 3229
    • 3o Kondo H, Oishi M, Fujikawa K, Amii H. Adv. Synth. Catal. 2011; 383: 1247
    • 3p Zhang C.-P, Wang Z.-L, Chen Q.-Y, Zhang C.-T, Gu Y.-C, Xiao J.-C. Angew. Chem. Int. Ed. 2011; 50: 1896
    • 3q Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 3r Tomashenko OA, Escudero-Adan EC, Belmonte MM, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 3793
    • Recent examples for trifluoromethylation of C–H bonds, see:

    • 4a Wang X, Truesdale L, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648
    • 4b Chu L, Qing F.-L. J. Am. Chem. Soc. 2010; 132: 7262
    • 4c Parsons AT, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
    • 4d Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-j, Gong T.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
    • 4e Wang X, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
    • 4f Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
    • 4g Mu X, Chen S, Zhen X, Liu G. Chem.–Eur. J. 2011; 17: 6039
    • 4h Ye Y, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
    • 4i Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
    • 4j Liu T, Shao X, Wu Y, Shen Q. Angew. Chem. Int. Ed. 2012; 51: 540
    • 4k Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
    • 5a Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
    • 5b Umemoto T, Adachi K, Ishihara S. J. Org. Chem. 2007; 72: 6905
    • 5c Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 5d Eisenberger P, Kieltsch I, Armanino N, Togni A. Chem. Commun. 2008; 1575
    • 5e Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew. Chem. Int. Ed. 2009; 48: 4332
    • 5f Koller R, Huchet Q, Battaglia P, Welch JM, Togni A. Chem. Commun. 2009; 5993
    • 5g Santchi N, Togni A. J. Org. Chem. 2011; 76: 4189
    • 5h Niedermann K, Fruh N, Vinogradova E, Wiehn MS, Moreno A, Togni A. Angew. Chem. Int. Ed. 2011; 50: 1059
  • 6 Engel R. Chem. Rev. 1977; 77: 349
    • 7a Burton DJ, Yang ZY, Qiu W. Chem. Rev. 1996; 96: 1641
    • 7b Chambers RD, Jaouhari R, O’Hagan J. J. Chem. Soc., Chem. Commun. 1988; 1169
    • 7c Hebel D, Kirk KL, Kinjo J, Kovács T, Lesjak K, Balzarini J, De Clercq E, Torrence PF. Bioorg. Med. Chem. Lett. 1991; 1: 357
    • 7d Howson W, Hills JM. Bioorg. Med. Chem. Lett. 1991; 1: 501
    • 7e Smyth MS, Ford HJr, Burke TR Jr.. Tetrahedron Lett. 1992; 33: 4137
    • 7f Yang ZY, Burton DJ. J. Org. Chem. 1992; 57: 4676
    • 7g Hu CM, Chen J. J. Chem. Soc., Perkin Trans. 1 1993; 327
    • 7h Matulic-Adamic J, Haeberli P, Usman N. J. Org. Chem. 1995; 60: 2563
    • 7i Yokomatsu T, Sato M, Shibuya S. Tetrahedron: Asymmetry 1996; 7: 2743
    • 7j Berkowitz DB, Eggen M, Shen Q, Shoemaker RK. J. Org. Chem. 1996; 61: 4666
    • 7k Bin Y, Burke Jr. TR. Tetrahedron 1996; 52: 9963
    • 7l Stirtan WG, Withers SG. Biochemistry 1996; 35: 15057
    • 7m Herpin TF, Houlton JS, Motherwell WB, Roberts BP, Wiebel J. Chem. Commun. 1996; 613
    • 7n Arnone A, Bravo P, Massimo F, Viani F, Carnela Z. Synthesis 1998; 1511
    • 8a Chambers RD, Jaouhari R, O’Hagan J. Tetrahedron 1989; 45: 5101
    • 8b Halazy S, Ehrhard A, Danzin C. J. Am. Chem. Soc. 1991; 113: 315
    • 8c Phillion DP, Cleary DG. J. Org. Chem. 1992; 57: 2763
    • 8d Martin SF, Wong Y, Wagman AS. J. Org. Chem. 1994; 59: 4821
    • 8e Halazy S, Ehrhard A, Eggenspiller A, Berges-Gross V, Danzin C. Tetrahedron 1996; 52: 177
  • 9 Isbell AF. US 266,675, 1961 ; Chem. Abstr. 1963, 58, 11394f
  • 11 Nair HK, Burton DJ. J. Am. Chem. Soc. 1997; 119: 9137
  • 12 Tworowska I, Dabkowski W, Michalski J. Angew. Chem. Int. Ed. 2001; 40: 2898
  • 13 Yagupolskii LM, Matsnev AV, Orlova RK, Deryabkin BG, Yagupolskii YL. J. Fluorine Chem. 2008; 129: 131
  • 14 Zhou Y, Yin S, Gao Y, Zhao Y, Goto M, Han L.-B. Angew. Chem. Int. Ed. 2010; 49: 6852