RSS-Feed abonnieren
DOI: 10.1055/s-0031-1291358
Estrogen Plus Estrogen Receptor Antagonists Alter Mineral Production by Osteoblasts In Vitro
Publikationsverlauf
received 09. Mai 2011
accepted 11. Oktober 2011
Publikationsdatum:
28. November 2011 (online)
Abstract
In early postmenopausal women, estrogen withdrawal is associated with increased bone turnover leading to bone loss and increased risk of fracture. Recent studies have suggested that the remaining bone tissue is significantly stronger, stiffer and has an increased tissue-level mineral content. Such changes may occur to compensate for bone loss or as a direct result of estrogen deficiency. To date many details of the physiology of osteoblastic cells during estrogen deficiency are vague. In this study we test the hypothesis that osteoblastic matrix mineralisation is altered at the onset of estrogen deficiency. In vitro cell culture experiments were carried out up to 28 days to compare the mineral production of MC3T3-E1 osteoblastic cells subject to estrogen deficiency (fulvestrant), enhanced estrogen supplementation (17-β-estradiol) or a combination of both. Mineralisation was detected using von Kossa staining and was quantified with alizarin red absorbance readings. The expression of osteocalcin and osteopontin proteins, markers of osteoblast differentiation and mineralisation, was monitored using immunohistochemistry. Our results demonstrate that estrogen enhancement improves matrix mineralisation by MC3T3 cells in vitro. Furthermore this study found a significant reduction in the level of mineralisation when cells were treated with a combination of estrogen and fulvestrant. In an estrogen deficient environment mineralisation by osteoblastic cells was not altered. These findings suggest that altered tissue mineralisation following estrogen deficiency is not a direct result of estrogen deficiency on osteoblasts. Rather, we propose that altered tissue mineralisation may be a compensatory mechanism by bone to counter bone loss and reduced strength.
-
References
- 1 Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B. Mortality after osteoporotic fractures. Osteoporos Int 2004; 15: 38-42
- 2 Riggs BL, Khosla S, Melton 3 rd LJ. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002; 23: 279-302
- 3 Parfitt AM. The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int 1984; 36 (Suppl. 01) S37-S45
- 4 Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990; 5: 311-319
- 5 Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 2001; 28: 80-86
- 6 Turner CH, Forwood MR. On animal models for studying bone adaptation. Calcif Tissue Int 1994; 55: 316-317
- 7 Wronski TJ, Dann LM, Scott KS, Cintron M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 1989; 45: 360-366
- 8 Kennedy OD, Brennan O, Rackard SM, Staines A, O’Brien FJ, Taylor D, Lee TC. Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery. J Ortho Res 2009; 27: 303-309
- 9 Brennan O, Kennedy OD, Lee TC, Rackard SM, O’Brien FJ. Biomechanical properties across trabeculae from the proximal femur of normal and ovariectomised sheep. J Biomech 2009; 42: 498-503
- 10 McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, Prendergast PJ. Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 2006; 39: 392-400
- 11 Brennan M, Gleeson JP, Browne M, O’Brien FJ, Thurner PJ, McNamara LM. Site Specific Increase in Heterogeneity of Trabecular Bone Tissue Mineral during Estrogen Deficiency. Cells Mater 2011; 15: 396-406
- 12 Busse B, Hahn M, Soltau M, Zustin J, Puschel K, Duda GN, Amling M. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 2009; 45: 1034-1043
- 13 Khosla S, Melton 3 rd LJ, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 1998; 83: 2266-2274
- 14 Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996; 11: 1043-1051
- 15 Rozenberg S, Kroll M, Pastijn A, Vandromme J. Osteoporosis prevention and treatment with sex hormone replacement therapy. Clin Rheumatol 1995; 14 (Suppl. 03) 14-17
- 16 Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056-1061
- 17 Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991; 88: 6613-6617
- 18 Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 1996; 2: 1132-1136
- 19 Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 2008; 27: 535-545
- 20 Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 1992; 257: 88-91
- 21 Jilka RL, Passeri G, Girasole G, Cooper S, Abrams J, Broxmeyer H, Manolagas SC. Estrogen loss upregulates hematopoiesis in the mouse: a mediating role of IL-6. Exp Hematol 1995; 23: 500-506
- 22 Rosen CJ. Pathogenesis of osteoporosis. Baillieres Best Pract Res Clin Endocrinol Metab 2000; 14: 181-193
- 23 Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 1993; 14: 681-691
- 24 Bradford PG, Gerace KV, Roland RL, Chrzan BG. Estrogen regulation of apoptosis in osteoblasts. Physiol Behav 2009; 99: 181-185
- 25 Kloosterboer HJ, Ederveen AG. Pros and cons of existing treatment modalities in osteoporosis: a comparison between tibolone, SERMs and estrogen (+/ − progestogen) treatments. J Steroid Biochem Mol Biol 2002; 83: 157-165
- 26 el Haj AJ, Minter SL, Rawlinson SC, Suswillo R, Lanyon LE. Cellular responses to mechanical loading in vitro. J Bone Miner Res 1990; 5: 923-932
- 27 Marks SC, Popoff SN. Bone cell biology: The regulation of development, structure, and function in the skeleton. Am J Anat 1988; 183: 1-44
- 28 Batra GS, Hainey L, Freemont AJ, Andrew G, Saunders PT, Hoyland JA, Braidman IP. Evidence for cell-specific changes with age in expression of oestrogen receptor (ER) alpha and beta in bone fractures from men and women. J Pathol 2003; 200: 65-73
- 29 Qu Q, Perala-Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK, Harkonen P. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 1998; 22: 201-209
- 30 Riggs BL, Melton 3 rd LJ. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 2002; 17: 1114
- 31 Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 2002; 298: 843-846
- 32 Sterck JG, Klein-Nulend J, Lips P, Burger EH. Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 1998; 274: 1113-1120
- 33 Brennan O, Kennedy OD, Lee TC, Rackard SM, O’Brien FJ. Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis. J Orthop Res 2011; 29: 419-424
- 34 Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 1997; 82: 3128-3135
- 35 Frost HM. Micropetrosis. J Bone Joint Surg Am. 1960; 42-A: 144-150
- 36 Boyde A. The real response of bone to exercise. J Anat 2003; 203: 173-189
- 37 Kingsmill VJ, Boyde A. Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis. J Anat 1998; 192 (Pt 2) 245-256
- 38 Michael H, Harkonen PL, Vaananen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res 2005; 20: 2224-2232
- 39 Osborne CK, Wakeling A, Nicholson RI. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 2004; 90 (Suppl. 01) S2-S6
- 40 Kansra S, Yamagata S, Sneade L, Foster L, Ben-Jonathan N. Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release. Mol Cell Endocrinol 2005; 239: 27-36
- 41 Wakeling AE. The future of new pure antiestrogens in clinical breast cancer. Breast Cancer Res Treat 1993; 25: 1-9
- 42 Wakeling AE. Similarities and distinctions in the mode of action of different classes of antioestrogens. Endocr Relat Cancer 2000; 7: 17-28
- 43 Curran M, Wiseman L. Fulvestrant. Drugs 2001; 61: 807-813 discussion 814
- 44 Wakeling AE, Bowler J. Steroidal pure antioestrogens. J Endocrinol 1987; 112: R7-R10
- 45 Foo C, Frey S, Yang HH, Zellweger R, Filgueira L. Downregulation of beta-catenin and transdifferentiation of human osteoblasts to adipocytes under estrogen deficiency. Gynecol Endocrinol 2007; 23: 535-540
- 46 Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96: 191-198
- 47 Menard C, Mitchell S, Spector M. Contractile behavior of smooth muscle actin-containing osteoblasts in collagen-GAG matrices in vitro: implant-related cell contraction. Biomaterials 2000; 21: 1867-1877
- 48 Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 1992; 7: 683-692
- 49 Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 1993; 14: 424-442
- 50 Bellido T, Girasole G, Passeri G, Yu XP, Mocharla H, Jilka RL, Notides A, Manolagas SC. Demonstration of estrogen and vitamin D receptors in bone marrow-derived stromal cells: up-regulation of the estrogen receptor by 1,25-dihydroxyvitamin-D3. Endocrinology 1993; 133: 553-562
- 51 Bu YH, Peng D, Zhou HD, Huang QX, Liu W, Luo XB, Tang LL, Tang AG. Insulin receptor substrate 2 plays important roles in 17beta estradiol induced bone formation. J Endocrinol Invest 2009; 38: 682-689
- 52 Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem (Suppl 2001; Suppl 36: 144-155
- 53 Gallagher A, Chambers TJ, Tobias JH. The estrogen antagonist ICI 182,780 reduces cancellous bone volume in female rats. Endocrinology 1993; 133: 2787-2791
- 54 Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 1986; 83: 2496-2500
- 55 McGarry J, Klein-Nulend J, Prendergast PJ. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E(2) in osteocytes and osteoblasts. Biochem Biophys Res Commun 2005; 330: 341-348
- 56 Heshmati HM, Khosla S, Robins SP, O’Fallon WM, Melton 3 rd LJ, Riggs BL. Role of low levels of endogenous estrogen in regulation of bone resorption in late postmenopausal women. J Bone Miner Res 2002; 17: 172-178
- 57 Love RR, Mazess RB, Barden HS, Epstein S, Newcomb PA, Jordan VC, Carbone PP, DeMets DL. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 1992; 326: 852-856
- 58 Agrawal A, Hannon RA, Cheung KL, Eastell R, Robertson JF. Bone turnover markers in postmenopausal breast cancer treated with fulvestrant – a pilot study. Breast 2009; 18: 204-207
- 59 Frost HM. In vivo osteocyte death. J Bone Joint Surg Am 1960; 42-A: 138-143
- 60 Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001; 104: 719-730