Thorac Cardiovasc Surg 2012; 60(04): 247-254
DOI: 10.1055/s-0031-1298059
Original Basic Science
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Enhancement of Myocardial and Vascular Function after Phosphodiesterase-5 Inhibition in a Rat Model

Sivakkanan Loganathan
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Tamás Radovits
2   Heart Center, Semmelweis University, Budapest, Hungary
,
Sevil Korkmaz
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Kristóf Hirschberg
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Enikö Barnucz
2   Heart Center, Semmelweis University, Budapest, Hungary
,
Alexander Weymann
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Timo Bömicke
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Rawa Arif
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Matthias Karck
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
,
Gábor Szabó
1   Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

09 May 2011

16 August 2011

Publication Date:
17 January 2012 (online)

Abstract

Background Recent studies have shown the potential of PDE-5 inhibition on acute and chronic heart failure. Nevertheless it remained unclear, how far load-reducing properties and direct effects on myocardial contractility are responsible for these observations. In the present study, we investigated the effects of vardenafil on myocardial contractility and vascular function in a dose–response study.

Methods We performed left ventricular pressure-volume analysis in young adult rats by using a Millar microtip conductance catheter. Pressure-volume loops were recorded before and after intravenous injection of vardenafil (3, 10, 30, 100, 300 μg/kg, n = 6/group).

Results Treatment with vardenafil resulted in a significant (p < 0.05) increase in the load-independent cardiac contractility parameters reaching its maximum at the dose of 100μg/kg (ESPVR: 2.15 ± 0.15 vs. 3.29 ± 0.26 mm Hg/μL; PRSW: 93.28 ± 4.04 vs. 134.90 ± 6.27 mm Hg; peak positive dP/dt/EDV: 38.73 ± 7.97 vs. 53.02 ± 3.74 mm Hg·s−1·µL−1; before versus after 100 μg/kg vardenafil). Results of the in vitro organ-bath experiments showed an augmented vasorelaxation of precontracted aortic rings after vardenafil treatment.

Conclusion Our data supports the hypothesis that the usage of vardenafil as “inodilators” could have beneficial effects in heart failure patients.

 
  • References

  • 1 Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995; 75 (4) 725-748
  • 2 Reffelmann T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 2003; 108 (2) 239-244
  • 3 Tran D, Howes LG. Cardiovascular safety of sildenafil. Drug Saf 2003; 26 (7) 453-460
  • 4 Arruda-Olson AM, Mahoney DW, Nehra A, Leckel M, Pellikka PA. Cardiovascular effects of sildenafil during exercise in men with known or probable coronary artery disease: a randomized crossover trial. JAMA 2002; 287 (6) 719-725
  • 5 Morales A, Gingell C, Collins M, Wicker PA, Osterloh IH. Clinical safety of oral sildenafil citrate (VIAGRA) in the treatment of erectile dysfunction. Int J Impot Res 1998; 10 (2) 69-73, discussion 73–74
  • 6 Hirschberg K, Radovits T, Loganathan S , et al. Selective phosphodiesterase-5 inhibition reduces neointimal hyperplasia in rat carotid arteries after surgical endarterectomy. J Thorac Cardiovasc Surg 2009; 137 (6) 1508-1514
  • 7 Loganathan S, Radovits T, Hirschberg K , et al. Effects of selective phosphodiesterase-5-inhibition on myocardial contractility and reperfusion injury after heart transplantation. Transplantation 2008; 86 (10) 1414-1418
  • 8 Giordano D, De Stefano ME, Citro G, Modica A, Giorgi M. Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain. Biochim Biophys Acta 2001; 1539 (1-2) 16-27
  • 9 Senzaki H, Smith CJ, Juang GJ , et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 2001; 15 (10) 1718-1726
  • 10 Abdallah Y, Gkatzoflia A, Pieper H , et al. Mechanism of cGMP-mediated protection in a cellular model of myocardial reperfusion injury. Cardiovasc Res 2005; 66 (1) 123-131
  • 11 Ockaili R, Salloum F, Hawkins J, Kukreja RC. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 2002; 283 (3) H1263-H1269
  • 12 Vandeput F, Krall J, Ockaili R , et al. cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther 2009; 330 (3) 884-891
  • 13 Botha P, Parry G, Dark JH, Macgowan GA. Acute hemodynamic effects of intravenous sildenafil citrate in congestive heart failure: comparison of phosphodiesterase type-3 and -5 inhibition. J Heart Lung Transplant 2009; 28 (7) 676-682
  • 14 Guazzi M, Arena R, Pinkstaff S, Guazzi MD. Six months of Sildenafil therapy improves heart rate recovery in patients with heart failure. Int J Cardiol 2009; 136 (3) 341-343
  • 15 Patel MD, Katz SD. Phosphodiesterase 5 inhibition in chronic heart failure and pulmonary hypertension. Am J Cardiol 2005; 96 (12B) 47M-51M
  • 16 Schertel ER. Assessment of left-ventricular function. Thorac Cardiovasc Surg 1998; 46 (Suppl 02) 248-254
  • 17 Glower DD, Spratt JA, Snow ND , et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985; 71 (5) 994-1009
  • 18 Pacher P, Mabley JG, Liaudet L , et al. Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. Am J Physiol Heart Circ Physiol 2004; 287 (5) H2132-H2137
  • 19 Halcox JP, Nour KR, Zalos G , et al. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol 2002; 40 (7) 1232-1240
  • 20 Radovits T, Bömicke T, Kökény G , et al. The phosphodiesterase-5 inhibitor vardenafil improves cardiovascular dysfunction in experimental diabetes mellitus. Br J Pharmacol 2009; 156 (6) 909-919
  • 21 Korkmaz S, Radovits T, Barnucz E , et al. Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury. Circulation 2009; 120 (8) 677-686
  • 22 Radovits T, Gerö D, Lin LN , et al. Improvement of aging-associated cardiovascular dysfunction by the orally administered copper(II)-aspirinate complex. Rejuvenation Res 2008; 11 (5) 945-956
  • 23 Radovits T, Seres L, Gero D , et al. Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol 2007; 42 (7) 676-685
  • 24 Radovits T, Seres L, Gero D , et al. The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mech Ageing Dev 2007; 128 (2) 173-181
  • 25 Corbin J, Rannels S, Neal D , et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin 2003; 19 (8) 747-752
  • 26 Cremers B, Scheler M, Maack C , et al. Effects of sildenafil (viagra) on human myocardial contractility, in vitro arrhythmias, and tension of internal mammaria arteries and saphenous veins. J Cardiovasc Pharmacol 2003; 41 (5) 734-743
  • 27 Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res 1978; 43 (5) 677-687
  • 28 Karunanithi MK, Michniewicz J, Copeland SE, Feneley MP. Right ventricular preload recruitable stroke work, end-systolic pressure-volume, and dP/dtmax-end-diastolic volume relations compared as indexes of right ventricular contractile performance in conscious dogs. Circ Res 1992; 70 (6) 1169-1179
  • 29 Little WC. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res 1985; 56 (6) 808-815
  • 30 Fischmeister R, Hartzell HC. Regulation of calcium current by low-Km cyclic AMP phosphodiesterases in cardiac cells. Mol Pharmacol 1990; 38 (3) 426-433
  • 31 Degerman E, Belfrage P, Manganiello VC. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem 1997; 272 (11) 6823-6826
  • 32 Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2006; 109 (3) 366-398
  • 33 Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2 + -activated and ATP-sensitive K + channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol 2008; 44 (1) 105-113