Planta Med 2012; 78(7): 711-719
DOI: 10.1055/s-0031-1298380
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Neolignans and Sesquiterpenes from Cell Cultures of Stellera chamaejasme

Li-Rui Qiao1 , Lin Yang1 , Jian-Hua Zou1 , Li Li1 , Hua Sun1 , Yi-Kang Si1 , Dan Zhang1 , Xiaoguang Chen1 , Jungui Dai1
  • 1State Key Laboratory of Bioactive Substances and Function of Natural Medicines and Key Laboratory of Biosynthesis of Natural Products, Ministry of Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
Further Information

Publication History

received Dec. 5, 2011 revised February 5, 2012

accepted February 22, 2012

Publication Date:
22 March 2012 (online)

Abstract

Two new neolignans (1, 2) and six sesquiterpenes (38) were isolated from the cell cultures of Stellera chamaejasme. Their structures and absolute configurations were elucidated by extensive spectroscopic and computational methods. Compound 4 exhibited significant protective effects against CCl4-induced hepatotoxicity in HepG2 cells, reducing aspartate aminotransferase release by 29.49 % at 10 µM. These compounds have not been isolated from plant material, which implies that in vitro plant cell cultures may offer alternative and effective sources of bioactive natural compounds.

Supporting Information

References

  • 1 Feng B M, Pei Y H, Hua H M, Wang T, Zhang Y. Biflavonoids from Stellera chamaejasme.  Pharm Biol. 2003;  41 59-61
  • 2 Yu B Q, Xu W C. Advances chemical constituents and activity studies on Stellera chamaeiasmme L.  Agrochemicals. 2008;  47 863-866
  • 3 Tang X R, Hou T P. Isolation and identification of 2-isopropyl-5-methylphenol from Stellera chamaejasme and its insecticidal activity against Aphis craccivora and Pieris rapae.  Nat Prod Res. 2011;  25 381-386
  • 4 Yoshida M, Feng W J, Saijo N, Ikekawa T. Antitumor activity of daphnane-type diterpene gnidimacrin isolated from Stellera chamaejasme L.  Int J Cancer. 1996;  66 268-273
  • 5 Feng B M, Pei Y H, Hua H M. A new chromone derivative from Stellera chamaejasme L.  Chin Chem Lett. 2002;  13 738-739
  • 6 Xu Z H, Qin G W, Li X Y, Xu R S. New biflavanones and bioactive compound from Stellera chamaejasme L.  Acta Pharm Sin. 2001;  36 669-671
  • 7 Niwa M, Takamizawa H, Tatematsu H, Hirata Y. Piscicidal constituents of Stellera chamaejasme L.  Chem Pharm Bull. 1982;  30 4518-4520
  • 8 Dai J G, Bai J, Sakai J, Ando M. A new taxoid from a callus culture of Taxus cuspidata as an MDR reversal agent.  Chem Pharm Bull. 2006;  54 306-309
  • 9 Bai J, Zhang S J, Dai J G, Ando M. Production of biologically active taxoids by a callus culture of Taxus cuspidata.  J Nat Prod. 2004;  67 58-63
  • 10 Chen R D, Zou J H, Jia J M, Dai J G. Chemical constituents from the cell cultures of Saussurea involucrata.  J Asian Nat Prod Res. 2010;  12 119-123
  • 11 Halgren T A. Merck molecular force field. II. MMFF94 van der waals and electrostatic parameters for intermolecular interactions.  J Comput Chem. 1996;  17 520-552
  • 12 Frisch M J, Trucks G W, Schlegel H, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A J, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R C, Pomelli R, Ochterski J, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B G, Chen W, Wong M W, Gonzalez C, Pople J A. GAUSSIAN 03 (Revision B.05). Wallingford: Gaussian, Inc.; 2004
  • 13 Liu G T, Li Y, Wei H L, Zhang H, Xu J Y, Yu L H. Mechanism of protective action of bicyclol against CCl4-induced liver injury in mice.  Liver Int. 2005;  25 872-879
  • 14 Liu G T. The anti-virus and hepatoprotective effect of bicyclol and its mechanism of action.  Chin J New Drug Clinic. 2001;  10 325-327
  • 15 Yeo H, Chin Y W, Park S Y, Kim J. Lignans of Rosa multiflora roots.  J Arch Pharm Res. 2004;  27 287-290
  • 16 Yoshikawa M, Morikawa T, Xu F, Ando S, Matsu H. (7R,8S) and (7S,8R) 8–5′ linked neolignans from Egyptian herbal medicine Anastatica hierochuntica and inhibitory activities of lignans on nitric oxide production.  Heterocycles. 2003;  60 1787-1792
  • 17 Tan R X, Jakupovic J, Jia Z J. Aromatic constituents from Viadimiria souliei.  Planta Med. 1990;  56 475-477
  • 18 Antus S, Kurtan T, Juhasz L, Kiss L, Hollosi M, Majer Z S. Chiroptical properties of 2,3-dihydrobenzo[b]furan and chromane chromophores in naturally occurring O-heterocycles.  Chirality. 2001;  13 493-506
  • 19 Hirai N, Okamoto M, Udagawa H, Yamamuro M, Kato M, Koshimizu K. Absolute configuration of dehydrodiconiferyl alcohol.  Biosci Biotechnol Biochem. 1994;  58 1679-1684
  • 20 Xiong L, Zhu C G, Li Y R, Tian Y, Lin S, Yuan S P, Hu J F, Hou Q, Chen N H, Yang Y C, Shi J G. Lignans and neolignans from Sinocalamus affinis and their absolute configurations.  J Nat Prod. 2011;  74 1188-1200
  • 21 Liang S, Shen Y M, Feng Y, Tian J M, Liu X H, Xiong Z, Zhang W D. Terpenoids from Daphne aurantiaca and their potential anti-inflammatory activity.  J Nat Prod. 2010;  73 532-535
  • 22 Bari L D, Pescitelli G, Pratelli C, Pini D, Salvadori P J. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4. 1. Snatzke's method revisited.  J Org Chem. 2001;  66 4819-4825
  • 23 Blay G, Bargues V, Cardona L, García B, Pedro J R. Ultrasound assisted reductive cleavage of eudesmane and guaiane γ–enonelactones. Synthesis of 1α,7α,10 αH-guaian-4,11-dien-3-one and hydrocolorenone from santonin.  Tetrahedron. 2001;  57 9719-9725
  • 24 Miski M, De Luengo D H, Mabry T J. Guaiane sesquiterpenes from Decachaeta scabrella.  Phytochemistry. 1987;  26 199-200
  • 25 Bohlmann F, Borthakur N. Sesquiterpenes and norsesquiterpenes from Pechuel-loeschea leibnitziae.  Phytochemistry. 1982;  21 1160-1162
  • 26 Uchida I, Kuriyama K. The π-π* circular dichroism of αβ-unsaturated γ-lactones.  Tetrahedron Lett. 1974;  15 3761-3764
  • 27 Ye X L. Stereochemistry. 2nd edition. Beijing: Beijing University Press; 1999: 257-279
  • 28 Song F H, Xu X L, Li S, Wang S J, Zhao J L, Cao P, Yang Y C, Fan X, Shi J G, He L, Lu Y. Norsesquiterpenes from the brown alga Dictyopteris divaricata.  J Nat Prod. 2005;  68 1309-1313
  • 29 Jacquot D, Poeschke O, Burger C. New terpenes and macrocycles. Patent WO2009146772 2009
  • 30 Diedrich C, Grimme S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra.  J Phys Chem A. 2003;  107 2524-2539
  • 31 Yuan T, Zhu R X, Zhang H, Odeku O A, Yang S P, Liao S G, Yue J M. Structure determination of grandifotane A from Khaya grandifoliola by NMR, X-ray diffraction, and ECD calculation.  Org Lett. 2010;  12 252-255
  • 32 Liu G T. Bicyclol: a novel drug for treating chronic viral hepatitis B and C.  Med Chem. 2009;  5 29-43

Prof. Jungui Dai, Ph.D.

Institute of Materia Medica
Chinese Academy of Medical Sciences & Peking Union Medical College
Biosynthesis of Natural Products

1 Xian Nong Tan Street

100050 Beijing

China

Phone: +86 10 63 16 51 95

Fax: +86 10 63 01 77 57

Email: jgdai@imm.ac.cn