Rofo 2012; 184(3): 248-255
DOI: 10.1055/s-0031-1299046
Technik und Medizinphysik
© Georg Thieme Verlag KG Stuttgart · New York

256-MSCT Image Acquisition with Sequential Axial Scans: Evaluation of Image Quality and Resolution in a Phantom Study

Die 256-MSCT-Bildakquisition mit sequenziellen axialen Scans: Evaluation der Bildqualität und -auflösung im Rahmen einer Phantomstudie
T. Klink
1   Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf
,
H. Nagel
2   Wissenschaft & Technik für die Radiologie, Dr. HD Nagel
,
B. Schwartz
1   Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf
,
M. Regier
1   Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf
,
G. Adam
1   Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf
,
P. G. Begemann
3   Röntgeninstitut Düsseldorf
› Author Affiliations
Further Information

Publication History

04 August 2011

23 November 2011

Publication Date:
30 January 2012 (online)

Abstract

Purpose: Evaluation of image quality and resolution of varying sequential axial scan protocols utilizing two resolution phantoms with a 256-MSCT scanner.

Materials and Methods: Sequential axial scans were performed on a z-axis and an axial-plane resolution phantom with varying acquisition and reconstruction parameters. Two independent observers evaluated the image quality and resolution, and analyzed quantitative image quality parameters and radiation doses.

Results: The best image quality and resolution were achieved with an activated z-flying focal spot (zFFS) and overlapping reconstruction. With an activated zFFS, image degradation was significantly minimized in marginal or overlapping zones of the beam, but the maximum effective detector width was reduced to 82 % and 75 %, respectively depending on the field of view. With a deactivated zFFS, the effective detector width was not restricted, but the image quality decreased and the artifacts increased as the collimation increased.

Conclusion: For sequential axial CT data acquisition with multi-planar image reformation, the zFFS technique is crucial to achieve the best image quality and resolution. Major advantages are minimized image degradation and increased spatial resolution along the z-axis, but the zFFS reduces the maximum effective detector width.

Zusammenfassung

Ziel: Evaluation der Bildqualität und -auflösung von unterschiedlichen sequentiellen axialen Scanprotokollen in einer Phantomstudie an einem 256-MSCT.

Material und Methoden: Die sequenziellen axialen Scans erfolgten an einem z-Achsen- und einem Axialebenen-Auflösungsphantom mit unterschiedlichen Scan- und Rekonstruktionseinstellungen. Die Bildqualität und die -auflösung wurden durch zwei unabhängige Beobachter beurteilt. Außerdem wurden quantitative Bildqualitätsparameter und die applizierte Strahlendosis analysiert.

Ergebnisse: Die beste Bildqualität und -auflösung wurden mit aktiviertem z-Achsen-Spingfokus (zFFS) und einer überlappenden Bildrekonstruktion erzielt. Durch Aktivierung des zFFS wurden Qualitätsverluste insbesondere in den Randbereichen bzw. in den Überlappungszonen des Kegelstrahls signifikant minimiert. Jedoch wurde dabei die effektive Detektorbreite in Abhängigkeit vom Sichtfeld auf 82 bzw. 75 % reduziert. Bei deaktiviertem zFFS konnte zwar die maximale effektive Detektorbreite ausgeschöpft werden, aber die Qualitätsverluste stiegen mit der Wahl zunehmend breiterer Kollimationseinstellungen an.

Schlussfolgerung: Für die sequenzielle axiale CT-Datenakquisition mit multiplanarer Bildreformatierung trägt die zFFS-Technik entscheidend zu einer optimalen Bildqualität und -auflösung bei. Wesentliche Vorzüge sind minimierte Qualitätsverluste und eine höhere räumliche Auflösung entlang der z-Achse, nachteilig ist eine reduzierte maximale effektive Detektorbreite.

 
  • References

  • 1 Earls JP, Berman EL, Urban BA et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 2008; 246: 742-753
  • 2 Hsieh J, Londt J, Vass M et al. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Medical physics 2006; 33: 4236-4248
  • 3 Shuman WP, Branch KR, May JM et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 2008; 248: 431-437
  • 4 Hirai N, Horiguchi J, Fujioka C et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 2008; 248: 424-430
  • 5 Ko SM, Kim NR, Kim DH et al. Assessment of image quality and radiation dose in prospective ECG-triggered coronary CT angiography compared with retrospective ECG-gated coronary CT angiography. Int J Cardiovasc Imaging 2009; 26: 93-101
  • 6 Achenbach S, Ropers D, Hoffmann U et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 2004; 43: 842-847
  • 7 Pugliese F, Mollet NR, Runza G et al. Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 2006; 16: 575-582
  • 8 Dewey M, de Vries H, de Vries L et al. The present and future of cardiac CT in research and clinical practice: moderated discussion and scientific debate with representatives from the four main vendors. Fortschr Röntgenstr 2010; 182: 313-321
  • 9 Dewey M, Zimmermann E, Deissenrieder F et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 2009; 120: 867-875
  • 10 Walker M, Olszewski M, Desai M. New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging 2009; 25: 189-199
  • 11 Schuleri KH, George RT, Lardo AC et al. Applications of cardiac multidetector CT beyond coronary angiography. Nat Rev Cardiol 2009; 6: 699-710
  • 12 Klass O, Walker M, Siebach A et al. Prospectively gated axial CT coronary angiography: comparison of image quality and effective radiation dose between 64- and 256-slice CT. Eur Radiol 2010; 20: 1124-1131
  • 13 Flohr T, Stierstorfer K, Raupach R et al. Performance evaluation of a 64-slice CT system with z-flying focal spot. Fortschr Röntgenstr 2004; 176: 1803-10
  • 14 Flohr TG, Stierstorfer K, Ulzheimer S et al. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 2005; 32: 2536-2547
  • 15 Kyriakou Y, Kachelriess M, Knaup M et al. Impact of the z-flying focal spot on resolution and artifact behavior for a 64-slice spiral CT scanner. Eur Radiol 2006; 16: 1206-1215
  • 16 Schlosser T, Hunold P, Voigtländer T et al. Coronary artery calcium scoring: influence of reconstruction interval and reconstruction increment using 64-MDCT. American journal of roentgenology 2007; 188: 1063-1068
  • 17 Ohnesorge B, Flohr T, Becker C et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000; 217: 564-571
  • 18 Horiguchi J, Matsuura N, Yamamoto H et al. Variability of repeated coronary artery calcium measurements by 1.25-mm- and 2.5-mm-thickness images on prospective electrocardiograph-triggered 64-slice CT. Eur Radiol 2008; 18: 209-216
  • 19 Marin D, Catalano C, De Filippis G et al. Detection of hepatocellular carcinoma in patients with cirrhosis: added value of coronal reformations from isotropic voxels with 64-MDCT. Am J Roentgenol 2009; 192: 180-187
  • 20 Nishino M, Kubo T, Kataoka ML et al. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: comparison between axial images versus coronal reformations. Eur J Radiol 2006; 59: 33-41
  • 21 Nishino M, Kubo T, Kataoka ML et al. Evaluation of pulmonary embolisms using coronal reformations on 64-row multidetector-row computed tomography: Comparison with axial images. J Comput Assist Tomogr 2006; 30: 233-237
  • 22 Begemann PG, van Stevendaal U, Koester R et al. Evaluation of the influence of acquisition and reconstruction parameters for 16-row multidetector CT on coronary calcium scoring using a stationary and dynamic cardiac phantom. Eur Radiol 2007; 17: 1985-1994
  • 23 Weigold W, Olszewski M, Walker M. Low-dose prospectively gated 256-slice coronary computed tomographic angiography. The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging) 2009; 25: 217-230
  • 24 Wu W, Budovec J, Foley WD. Prospective and retrospective ECG gating for thoracic CT angiography: a comparative study. Am J Roentgenol 2009; 193: 955-963
  • 25 Jin KN, Park EA, Shin CI et al. Retrospective versus prospective ECG-gated dual-source CT in pediatric patients with congenital heart diseases: comparison of image quality and radiation dose. The international journal of cardiovascular imaging 2010; 26: 63-73
  • 26 Begemann PG, van Stevendaal U, Manzke R et al. Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT using a dynamic cardiac phantom. Eur Radiol 2005; 15: 1015-26