Subscribe to RSS
DOI: 10.1055/s-0031-1299334
Einsatz von MR/PET in der onkologischen Bildgebung
Application of MR/PET in Oncologic ImagingPublication History
16 September 2011
30 January 2012
Publication Date:
22 May 2012 (online)
Zusammenfassung
Der folgende Übersichtsartikel präsentiert die Möglichkeiten, die sich mit der Hybridbildgebung an einem Magnetresonanz-Positronenemissionstomografen (MR/PET) ergeben. Mit den seit Kurzem zur Verfügung stehenden Ganzkörper-MR/PET-Scannern ist es möglich, die Vorteile beider Modalitäten außerhalb des Kopfes zu kombinieren. Dabei sind beide Modalitäten gefordert: auf Seiten des MRT ist die Bereitstellung hochaufgelöster anatomischer Bilder essenziell. Zusätzlich spielen funktionelle Methoden wie die diffusionsgewichtete Bildgebung (DWI), Spektroskopie und die Kontrastmitteldynamik eine wichtige Rolle. Auf Seiten der PET besteht die technische Herausforderung v. a. in der Bereitstellung einer geeigneten MR-basierten Schwächungskorrektur für die PET-Daten. Mit der Hybridbildgebung an einem MR/PET gelingt es, in einer Untersuchung sowohl morphologische als auch funktionelle Parameter zu erfassen. Es zeichnet sich ab, dass von diesem neuen hybriden Bildgebungsverfahren bei onkologischen Fragestellungen insbesondere Kinder und jüngere Erwachsene mit mehreren Verlaufskontrollen profitieren werden. Zum anderen werden sich für bestimmte Krankheitsbilder, bei denen regelhaft eine MRT- und eine PET/CT-Untersuchung durchgeführt werden, Vorteile ergeben. Dennoch ist zu erwarten, dass die MR/PET die PET/CT nicht ersetzen wird, da die PET/CT aufgrund ihrer Kosteneffizienz und der guten Verfügbarkeit weiter führend bleiben dürfte. Zudem existieren in der Lungendiagnostik nach wie vor Einschränkungen in der MRT. Für Forschungsbelange eröffnet insbesondere die simultane MR/PET neue Möglichkeiten, sei es in der Herzbildgebung, in funktionellen Hirnstudien oder bei der Erprobung neuer Tracer in Korrelation mit speziellen MR-Techniken. Die MR/PET stellt ein vielversprechendes Verfahren dar, mit dem in einer Strahlendosis-sparenden Untersuchung multimodal 2 Untersuchungen kombiniert durchgeführt werden können. Welche Krankheitsbilder konkret von dieser neuen Technik profitieren können, wird in prospektiven Studien zu klären sein.
Abstract
The present review aims to depict the possibilities offered by hybrid imaging with magnetic resonance positron emission tomography (MR/PET). Recently, new whole-body MR/PET scanners were introduced allowing for the combination of both modalities outside the brain. This is a challenge for both modalities: For MRI, it is essential to provide anatomical images with high resolution. Additionally, diffusion-weighted imaging (DWI), proton spectroscopy, but also dynamic contrast-enhanced imaging plays an important role. With regard to PET, the technical challenge mainly consists of obtaining an appropriate MR-based attenuation correction for the PET data. Using MR/PET, it is possible to acquire morphological and functional data in one examination. In particular, children and young adults will benefit from this new hybrid technique, especially in oncologic imaging with multiple follow-up examinations. However, it is expected that PET/CT will not be replaced completely by MR/PET because PET/CT is less cost-intensive and more widely available. Moreover, in lung imaging, MRI limitations still have to be accepted. Concerning research, simultaneous MR/PET offers a variety of new possibilities, for example cardiac imaging, functional brain studies or the evaluation of new tracers in correlation with specific MR techniques.
-
Literatur
- 1 De Ponti E, Morzenti S, Guerra L et al. Performance measurements for the PET/CT Discovery-600 using NEMA NU 2-2007 standards. Med Phys 2011; 38: 968-974
- 2 Delso G, Furst S, Jakoby B et al. Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR Scanner. J Nucl Med 2011; 52: 1914-1922
- 3 Schober O, Heindel W. PET-CT Hybrid Imaging. Stuttgart: Thieme; 2010
- 4 Zaidi H, Ojha N, Morich M et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 2011; 56: 3091-3106
- 5 Fischer BM, Lassen U, Hojgaard L. PET-CT in preoperative staging of lung cancer. N Engl J Med 2011; 364: 980-981
- 6 Langer A. A systematic review of PET and PET/CT in oncology: a way to personalize cancer treatment in a cost-effective manner?. BMC Health Serv Res 2010; 10: 283
- 7 Pawaroo D, Cummings NM, Musonda P et al. Non-small cell lung carcinoma: accuracy of PET/CT in determining the size of T1 and T2 primary tumors. Am J Roentgenol 2011; 196: 1176-1181
- 8 Shiraishi K, Nomori H, Ohba Y et al. Repeat FDG-PET for predicting pathological tumor response and prognosis after neoadjuvant treatment in nonsmall cell lung cancer: comparison with computed tomography. Ann Thorac Cardiovasc Surg 2010; 16: 394-400
- 9 Steinert HC. PET and PET-CT of lung cancer. Methods Mol Biol 2011; 727: 33-51
- 10 Fischer B, Lassen U, Mortensen J et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 2009; 361: 32-39
- 11 Peric B, Zagar I, Novakovic S et al. Role of serum S100B and PET-CT in follow-up of patients with cutaneous melanoma. BMC Cancer 2011; 11: 328
- 12 Strobel K, Skalsky J, Kalff V et al. Tumour assessment in advanced melanoma: value of FDG-PET/CT in patients with elevated serum S-100B. Eur J Nucl Med Mol Imaging 2007; 34: 1366-1375
- 13 Picchio M, Briganti A, Fanti S et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 2011; 59: 51-60
- 14 Souvatzoglou M, Krause BJ, Purschel A et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol 2011; 99: 193-200
- 15 Picchio M, Messa C, Landoni C et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003; 169: 1337-1340
- 16 Rinnab L, Mottaghy FM, Simon J et al. [11C]Choline PET/CT for targeted salvage lymph node dissection in patients with biochemical recurrence after primary curative therapy for prostate cancer. Preliminary results of a prospective study. Urol Int 2008; 81: 191-197
- 17 Scattoni V, Picchio M, Suardi N et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 2007; 52: 423-429
- 18 Chowdhury FU, Bradley KM, Gleeson FV. The role of 18F-FDG PET/CT in the evaluation of oesophageal carcinoma. Clin Radiol 2008; 63: 1297-1309
- 19 Esteves FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin Nucl Med 2006; 36: 169-181
- 20 Flamen P, Lerut A, Van Cutsem E et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol 2000; 18: 3202-3210
- 21 Wieder HA, Krause BJ, Herrmann K. PET and PET-CT in esophageal and gastric cancer. Methods Mol Biol 2011; 727: 59-76
- 22 Cashen AF, Dehdashti F, Luo J et al. 18F-FDG PET/CT for early response assessment in diffuse large B-cell lymphoma: poor predictive value of international harmonization project interpretation. J Nucl Med 2011; 52: 386-392
- 23 Cheson BD, Pfistner B, Juweid ME et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007; 25: 579-586
- 24 Herrmann K, Buck AK, Schuster T et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med 2011; 52: 690-696
- 25 Juweid ME. FDG-PET/CT in lymphoma. Methods Mol Biol 2011; 727: 1-19
- 26 Trotman J, Fournier M, Lamy T et al. Positron Emission Tomography-Computed Tomography (PET-CT) After Induction Therapy Is Highly Predictive of Patient Outcome in Follicular Lymphoma: Analysis of PET-CT in a Subset of PRIMA Trial Participants. J Clin Oncol 2011; 29: 3194-3200
- 27 Ciernik IF, Dizendorf E, Baumert BG et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003; 57: 853-863
- 28 Gehler B, Paulsen F, Oksuz MO et al. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 2009; 4: 56
- 29 Mac Manus MP, Hicks RJ, Ball DL et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 2001; 92: 886-895
- 30 Patel CN, Nazir SA, Khan Z et al. 18F-FDG PET/CT of cervical carcinoma. Am J Roentgenol 2011; 196: 1225-1233
- 31 Sironi S, Buda A, Picchio M et al. Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 2006; 238: 272-279
- 32 Xue F, Lin LL, Dehdashti F et al. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol 2006; 101: 147-151
- 33 Cetina L, Serrano A, Cantu-de-Leon D et al. F18-FDG-PET/CT in the evaluation of patients with suspected recurrent or persistent locally advanced cervical carcinoma. Rev Invest Clin 2011; 63: 227-235
- 34 Kitajima K, Murakami K, Yamasaki E et al. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent uterine cancer: comparison with PET and enhanced CT. Eur J Nucl Med Mol Imaging 2009; 36: 362-372
- 35 Lai CH, Huang KG, See LC et al. Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-D-glucose positron emission tomography. Cancer 2004; 100: 544-552
- 36 Pallardy A, Bodet-Milin C, Oudoux A et al. Clinical and survival impact of FDG PET in patients with suspicion of recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging 2010; 37: 1270-1278
- 37 Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med 2001; 28: 1707-1723
- 38 IQWiG. PET und PET/CT bei malignem Melanom. Abschlussbericht D06-01F. 2011
- 39 Catana C, Procissi D, Wu Y et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 2008; 105: 3705-3710
- 40 Judenhofer MS, Wehrl HF, Newport DF et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008; 14: 459-465
- 41 Pichler BJ, Judenhofer MS, Catana C et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47: 639-647
- 42 Schlemmer HP, Pichler BJ, Schmand M et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008; 248: 1028-1035
- 43 Bisdas S, Nagele T, Schlemmer HP et al. Switching on the lights for real-time multimodality tumor neuroimaging: The integrated positron-emission tomography/MR imaging system. Am J Neuroradiol 2010; 31: 610-614
- 44 Boss A, Bisdas S, Kolb A et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 2010; 51: 1198-1205
- 45 Boss A, Stegger L, Bisdas S et al. Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 2011; 21: 1439-1446
- 46 Bookheimer SY, Zeffiro TA, Blaxton T et al. A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology 1997; 48: 1056-1065
- 47 Cai W, Chen K, Mohamedali KA et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006; 47: 2048-2056
- 48 Chen K, Cai W, Li ZB et al. Quantitative PET imaging of VEGF receptor expression. Mol Imaging Biol 2009; 11: 15-22
- 49 von Schulthess GK, Burger C. Integrating imaging modalities: what makes sense from a workflow perspective?. Eur J Nucl Med Mol Imaging 2010; 37: 980-990
- 50 Coombs BD, Szumowski J, Coshow W. Two-point Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med 1997; 38: 884-889
- 51 Martinez-Moller A, Souvatzoglou M, Delso G et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50: 520-526
- 52 Keereman V, Holen RV, Mollet P et al. The effect of errors in segmented attenuation maps on PET quantification. Med Phys 2011; 38: 6010
- 53 Hofmann M, Steinke F, Scheel V et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008; 49: 1875-1883
- 54 Boss A, Kolb A, Hofmann M et al. Diffusion tensor imaging in a human PET/MR hybrid system. Invest Radiol 2010; 45: 270-274
- 55 Eiber M, Souvatzoglou M, Pickhard A et al. Simulation of a MR-PET protocol for staging of head-and-neck cancer including Dixon MR for attenuation correction. Eur J Radiol DOI: 10.1016/j.blov.2011.03.031.
- 56 Pfannenberg C, Aschoff P, Schanz S et al. Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 2007; 43: 557-564
- 57 Orcurto V, Denys A, Voelter V et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging in patients with liver metastases from uveal melanoma: results from a pilot study. Melanoma Res 2012; 22: 63-69
- 58 Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723
- 59 Flaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809-819
- 60 Strauss LG, Dimitrakopoulou-Strauss A. Can PET-CT with FDG replace contrast enhanced CT for imaging of liver metastases?. Eur J Nucl Med Mol Imaging 2007; 34: 1902-1905