RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299485
Silicon Carbide-Enhanced Microwave Ablation in an Ex-Vivo Bovine Liver Model – Effects on Heat Distribution and Ablation Volume
Modulation der Mikrowellenablation mittels Siliziumcarbid – Effekte auf die Temperaturverteilung und das Ablationsvolumen in einem Ex-vivo-RinderlebermodellPublikationsverlauf
27. September 2011
27. Februar 2012
Publikationsdatum:
19. April 2012 (online)
Abstract
Purpose: Evaluation of the maximum temperatures and ablation volumes in microwave ablation (MWA) after injection of different concentrations of silicon carbide (SiC) particles in an ex-vivo bovine liver model.
Materials and Methods: 15 ml of different concentrations of SiC particles (20 vol% SiC; 50 vol% SiC) mixed with 2 % gelatin were injected into an ex-vivo bovine liver. As a reference group, 2 % gelatin without SiC was injected. MWA was performed using a clinical MWA system with different generator settings (10 – 45 W/10 minutes). The temperature was measured at a distance of 5 mm and 10 mm from the applicator. Afterwards the liver tissue was sliced along the short and long axis, the ablation zones were measured on the x, y and z-axis and the ablation volume was calculated. All experiments were performed 5 times (total: 40 experiments).
Results: The average maximum temperatures measured at a generator setting of 45 W at a distance of 5 mm from the applicator were 103.4 ± 4.6 °C (20 vol% SiC), 103.3 ± 6.5 °C (50 vol% SiC) and 96.0 ± 4.2 °C in the control group (0 vol% SiC). At 45 W, injection of 20 vol% SIC caused a significantly higher maximum temperature than that achieved in the control group (p = 0.016). No significant temperature increase compared to the control group could be measured using 50 vol% SiC. The mean ablation volumes at 45 W and 20 vol% SiC and 50 vol% SiC were significantly larger (172.7 ± 31.5 ml and 171.0 ± 34.7 ml, respectively) than those achieved in the control group (111.2 ± 23.8 ml) (p = 0.027 and p = 0.045).
Conclusion: In an ex-vivo bovine liver model, the SiC particles demonstrated an enhancing effect of MWA with respect to maximum temperatures and ablation volume. Therefore, SiC is a promising candidate for enhancing MWA in vivo.
Zusammenfassung
Ziel: Untersuchung der Maximaltemperaturen und der Ablationsvolumina bei der Mikrowellenablation (MWA) nach Injektion verschiedener Konzentrationen von Siliciumcarbid (SiC) in einem ex-vivo-Rinderlebermodell.
Material und Methoden: 15 ml unterschiedlicher Mengen SiC-Partikel gemischt mit 2 % Gelatine (20 Vol% SiC; 50 Vol% SiC) wurden in Rinderleber injiziert. Als Kontrollgruppe wurde 2 % Gelatine ohne SiC verwendet. Die MWA wurde mit einem klinisch zugelassenen MWA-System mit verschiedenen Generatoreinstellungen (10 – 45 W/10 min) durchgeführt. Die Temperatur wurde dabei in 5 mm und 10 mm Abstand zum Applikator gemessen. Anschließend wurde jeweils das Ablationsareal exzidiert, entlang der x-, y- und z-Achse vermessen und das Ablationsvolumen berechnet. Alle Versuche wurden 5-fach durchgeführt.
Ergebnisse: Die durchschnittlichen Maximaltemperaturen mit 45 W Generatorleistung in 5 mm Abstand zum Applikator betragen 103,4 ± 4,6 °C (20 Vol% SiC), 103,3 ± 6,5 °C (50 Vol% SiC) und 96,0 ± 4,2 °C (Kontrollgruppe). Bei 45 W ist die Maximaltemperatur durch Hinzugabe von 20 Vol% SiC signifikant höher als in der Kontrollgruppe (p = 0,016). Keine signifikanten Unterschiede im Vergleich zur Kontrollgruppe sind bei der Verwendung von 50 Vol% SiC zu beobachten. Das Ablationsvolumen ist bei Verwendung von 20 Vol% und 50 Vol% SiC (172,7 ± 31,5 ml and 171,0 ± 34,7 ml) signifikant größer als in der Kontrollgruppe (111,2 ± 23,8 ml) (p = 0,027 und p = 0,045).
Schlussfolgerung: In einem ex-vivo-Rinderlebermodell konnten durch die Injektion verschiedener SiC-Gelatine-Mischungen verstärkende Effekte hinsichtlich Maximaltemperatur und Ablationsvolumen demonstriert werden. Aus diesem Grund ist SiC ein vielversprechender Kandidat zur in-vivo-Anwendung.
-
References
- 1 Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics 2005; 25: 69-83
- 2 Schramm W, Yang D, Wood BJ et al. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Open Biomed Eng J 2007; 1: 47-52
- 3 Isfort P, Bruners P, Penzkofer T et al. In-vitro-Experimente zur flüssigkeitsmodulierten Mikrowellenablation. Fortschr Röntgenstr 2010; 182: 518-524
- 4 Kremsner JM, Kappe CO. Silicon carbide passive heating elements in microwave-assisted organic synthesis. The Journal of organic chemistry 2006; 71: 4651-4658
- 5 Isfort P, Penzkofer T, Pfaff E et al. Silicon Carbide as a Heat-enhancing Agent in Microwave Ablation: In Vitro Experiments. Cardiovasc Intervent Radiol 2011; 34: 833-838
- 6 Bruch J, Rehn B, Song W et al. Toxicological investigations on silicon carbide. 2. In vitro cell tests and long term injection tests. Br J Ind Med 1993; 50: 807-813
- 7 Morimoto M, Sugimori K, Shirato K et al. Treatment of hepatocellular carcinoma with radiofrequency ablation: radiologic-histologic correlation during follow-up periods. Hepatology 2002; 35: 1467-1475
- 8 Head HW, Dodd 3rd GD. Thermal ablation of hepatocellular carcinoma. Gastroenterology 2004; 127: S167-S178
- 9 Bruners P, Hodenius M, Günther RW et al. Flüssigkeitsmodulierte RF-Ablation: In vitro Experimente. Fortschr Röntgenstr 2007; 179: 380-386
- 10 Curley SA, Izzo F, Ellis LM et al. Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg 2000; 232: 381-391
- 11 Livraghi T, Goldberg SN, Monti F et al. Saline-enhanced radio-frequency tissue ablation in the treatment of liver metastases. Radiology 1997; 202: 205-210
- 12 Morimoto M, Numata K, Kondou M et al. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer 2010; 116: 5452-5460
- 13 Bruners P, Müller H, Günther RW et al. Fluid-modulated bipolar radiofrequency ablation: an ex-vivo evaluation study. Acta Radiologica 2008; 49: 258-266
- 14 Hope WW, Schmelzer TM, Newcomb WL et al. Guidelines for power and time variables for microwave ablation in a porcine liver. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 2008; 12: 463-467
- 15 Katz JD. Microwave Sintering of Ceramics. Annual Review of Materials Science 1992; 22: 153-170
- 16 Bai Y, Bharti V, Xu HS et al. High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters 2000; 76: 3804-3806
- 17 Tabuse K. Basic knowledge of a microwave tissue coagulator and its clinical applications. Journal of hepato-biliary-pancreatic surgery 1998; 5: 165-172