Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(1): 30-39
DOI: 10.1055/s-0032-1301379
Fachwissen
Anästhesie & Intensivmedizin Topthema: Der erhöhte intrakranielle Druck
© Georg Thieme Verlag Stuttgart · New York

Der erhöhte intrakranielle Druck – Therapiemaßnahmen

Intracranial hypertension – Therapeutic options
Christoph Rosenthal
,
Stefan Wolf
,
Steffen Weber-Carstens
,
Farid Salih
Further Information

Publication History

Publication Date:
27 January 2012 (online)

Zusammenfassung

Ein erhöhter intrakranieller Druck kann die Folge verschiedener intrakranieller Pathologien sein. Persistierend hohe Werte über 20–25 mmHg führen eigenständig durch Perfusionsstörungen oder direkten Druck zu einer weiteren Schädigung des Gehirns führen. Dies kann für das neurologische Behandlungsergebnis und damit für das weitere Leben des Betroffenen katastrophale Folgen haben. Ein zentrales Krankheitsbild, das mit einer vital bedrohlichen intrakraniellen Druckerhöhung einhergehen kann, ist das Schädelhirntrauma. Die hieran entwickelten und zum Teil auch auf andere Pathologien mit erhöhtem intrakraniellen Druck übertragenen Behandlungsansätze basieren auf Basistherapiemaßnahmen, die um Eskalationsstufen ergänzt sind. Trotz der enormen gesellschaftlichen, medizinischen und ökonomischen Bedeutung einer effektiven Therapie des erhöhten intrakraniellen Druckes besteht aktuell nur wenig Evidenz für viele der auch in Leitlinien empfohlenen Therapiemaßnahmen.

Summary

Increased intracranial pressure can be the result of different intracranial pathologies. Sustained intracranial pressure above 20–25 mmHg may cause secondary brain injury by impaired cerebral perfusion or direct pressure with neuronal injury, with in consequence deterioration of neurological outcome. A main cause of critically increased intracranial pressure is traumatic brain injury. Most treatment strategies for increased intracranial pressure were developed and studied on these patients. Most of them were transferred to other pathologies with increased intracranial pressure.

Treatment is based on general measures, which can be escalated for medical and surgical options in case of failure to sufficiently decrease intracranial pressure below the established threshold. Despite its enormous medical and socio-economical relevance, the evidence for most treatment strategies of intracranial hypertension, though published in guidelines, is weak.

Kernaussagen

  • Ein erhöhter intrakranieller Druck ist der wichtigste Prädiktor für Mortalität und Morbidität nach Schädelhirntrauma.

  • Die Prinzipien der neurotraumatologischen Intensivmedizin sind auf die Verhinderung eines Anstiegs des intrakraniellen Drucks sowie die effektive Behandlung erhöhter Werte ausgerichtet.

  • Unterschieden wird zwischen Basismaßnahmen, Therapien der 1. Wahl und fakultativen Therapiemöglichkeiten.

  • Bei Patienten mit einem Schädelhirntrauma mit intrakranieller Läsion und einem Wert von 3–8 auf der Glasgow-Coma-Scale besteht eine Indikation zur Messung des intrakraniellen Drucks. Die alleinige Beurteilung im CT ist nicht ausreichend.

  • Der intrakranielle Druck kann über eine externe Ventrikeldrainage oder eine Parenchymsonde gemessen werden.

  • Eine suffiziente Analgosedierung und die Oberkörperhochlagerung sind Basismaßnahmen der Therapie bei Patienten mit Schädelhirntrauma.

  • Der zerebrale Perfusionsdruck entspricht der Differenz von mittlerem arteriellen Druck und intrakraniellem Druck und sollte um 60 mmHg bis max. 70 mmHg betragen.

  • Auch bei erhöhtem intrakraniellem Druck wird eine Normoventilation mit einem arteriellen pCO2 nicht <35 mmHg angestrebt.

  • Die Liquordrainage über eine externe Ventrikeldrainage ist die schnellste Möglichkeit, einen erhöhten intrakraniellen Druck zu senken.

  • Mannitol und hypertone NaCl-Lösung stehen als gleichwertige Alternativen zur Osmotherapie zur Verfügung. Neue Studien zeigen möglicherweise einen leichten klinischen Vorteil für NaCl, wobei die Evidenzlage noch niedrig ist.

  • Als fakultative Therapiemöglichkeiten eines erhöhten intrakraniellen Drucks können individuell diskutiert werden

    • eine therapeutische Hypothermie von 32–35°C Körpertemperatur,

    • eine Dekompressionskraniektomie,

    • eine lumbale Liquordrainage oder

    • eine EEG-gesteuerte Barbiturat-Narkose.

Ergänzendes Material

 
  • Literatur

  • 1 Rickels E, von Wild K, Wenzlaff P. Versorgung Schädel-Hirn-Verletzter in Deutschland. Unfallchirurg 2011; 114: 417-423
  • 2 Marmarou A, Lu J, Butcher I et al. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma 2007; 24: 270-280
  • 3 Juul N, Morris GF, Marshall SB, Marshall LF. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg 2000; 92: 1-6
  • 4 Saul TG, Ducker TB. Intracranial pressure monitoring in patients with severe head injury. Am Surg 1982; 48: 477-480
  • 5 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007; 24 (Suppl. 01)
  • 6 Monro A. Observations on the structure and function of the nervous system. Edinburgh: Creech & Johnson; 1823
  • 7 Kellie G. An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodie were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Trans Med Chir Sci Edinburgh 1824; 1: 84-169
  • 8 Czosnyka M, Smielewski P, Kirkpatrick P et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery discussion 1997; 41: 17-19
  • 9 Yau Y, Piper I, Contant C et al. Multi-centre assessment of the Spiegelberg compliance monitor: interim results. Acta Neurochir Suppl 2002; 81: 167-170
  • 10 Gelabert-González M, Ginesta-Galan V, Sernamito-García R et al. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien) 2006; 148: 435-441
  • 11 Al-Tamimi YZ, Helmy A, Bavetta S, Price SJ. Assessment of zero drift in the Codman intracranial pressure monitor: a study from 2 neurointensive care units. Neurosurgery discussion 2009; 64: 98-99
  • 12 Citerio G, Piper I, Chambers IR et al. Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: a report by the BrainIT group. Neurosurgery discussion 2008; 63
  • 13 Bekar A, Doğan S, Abaş F et al. Risk factors and complications of intracranial pressure monitoring with a fiberoptic device. J Clin Neurosci 2009; 16: 236-240
  • 14 Rossi S, Buzzi F, Paparella A et al. Complications and safety associated with ICP monitoring: a study of 542 patients. Acta Neurochir Suppl 1998; 71: 91-93
  • 15 Woernle CM, Burkhardt J-K, Bellut D et al. Do iatrogenic factors bias the placement of external ventricular catheters? – a single institute experience and review of the literature. Neurol Med Chir (Tokyo) 2011; 51: 180-186
  • 16 Scheithauer S, Bürgel U, Bickenbach J et al. External ventricular and lumbar drainage-associated meningoventriculitis: prospective analysis of time-dependent infection rates and risk factor analysis. Infection 2010; 38: 205-209
  • 17 Sonabend AM, Korenfeld Y, Crisman C et al. Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review. Neurosurgery 2011; 68: 996-1005
  • 18 Har Keong MRCS NC. Bulters DO, Richards H et al. The SILVER Trial. Neurosurgery 2010; 67: 549-549
  • 19 Soleman J, Marbacher S, Fandino J, Fathi AR. Is the use of antibiotic-impregnated external ventricular drainage beneficial in the management of iatrogenic ventriculitis?. Acta Neurochir (Wien) 2012; 154: 161-164
  • 20 Rivero-Garvía M, Márquez-Rivas J, Jiménez-Mejías ME et al. Reduction in external ventricular drain infection rate. Impact of a minimal handling protocol and antibiotic-impregnated catheters. Acta Neurochir (Wien) 2011; 153: 647-651
  • 21 S3-Leitlinie zu Analgesie, Sedierung und Delirmanagement. In German Medical Science ISSN1612-3174 2010; 8
  • 22 Skoglund K, Enblad P, Hillered L, Marklund N. The neurological wake-up test increases stress hormone levels in patients with severe traumatic brain injury*. Crit Care Med 2012; 40: 216-222
  • 23 Roberts DJ, Hall RI, Kramer AH et al. Sedation for critically ill adults with severe traumatic brain injury: A systematic review of randomized controlled trials*. Critic Care Med 2011; 39: 2743-2751
  • 24 Schmittner MD, Vajkoczy SL, Horn P et al. Effects of fentanyl and S(+)-ketamine on cerebral hemodynamics, gastrointestinal motility, and need of vasopressors in patients with intracranial pathologies: a pilot study. J Neurosurg Anesthesiol 2007; 19: 257-262
  • 25 Harbeck-Seu A, Brunk I, Platz T et al. A speedy recovery: amphetamines and other therapeutics that might impact the recovery from brain injury. Curr Opin Anaesthesiol 2011; 24: 144-153
  • 26 Hudetz JA, Pagel PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth 2010; 24: 131-142
  • 27 Feldman Z, Kanter MJ, Robertson CS et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg 1992; 76: 207-211
  • 28 Czosnyka M, Smielewski P, Piechnik S et al. Cerebral autoregulation following head injury. J Neurosurg 2001; 95: 756-763
  • 29 Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. J Trauma discussion 1990; 30: 940-941
  • 30 Eker C, Asgeirsson B, Grände PO et al. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 1998; 26: 1881-1886
  • 31 Howells T, Elf K, Jones PA et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg 2005; 102: 311-317
  • 32 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma 2007; 24 (Suppl. 01) 59-64
  • 33 Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 2006; 34: 1783-1788
  • 34 Steiner LA, Czosnyka M, Piechnik SK et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002; 30: 733-738
  • 35 Jaeger M, Dengl M, Meixensberger J, Schuhmann MU. Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 2010; 38: 1343-1347
  • 36 Ito H, Ibaraki M, Kanno I et al. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2005; 25: 852-857
  • 37 Diringer MN, Videen TO, Yundt K et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 2002; 96: 103-108
  • 38 Imberti R, Bellinzona G, Langer M. Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 2002; 96: 97-102
  • 39 Muizelaar JP, Marmarou A, Ward JD et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991; 75: 731-739
  • 40 Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med 2010; 38: 1348-1359
  • 41 Fortune JB, Feustel PJ, Graca L et al. Effect of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow after head injury. J Trauma discussion 1995; 39: 1097-1099
  • 42 Torre-Healy A, Marko NF, Weil RJ. Hyperosmolar Ttherapy for intracranial hypertension. Neurocrit Care [Epub ahead of print] 2011;
  • 43 Cascino T, Baglivo J, Conti J et al. Quantitative CT assessment of furosemide- and mannitol-induced changes in brain water content. Neurology 1983; 33: 898-903
  • 44 Bell BA, Smith MA, Kean DM et al. Brain water measured by magnetic resonance imaging. Correlation with direct estimation and changes after mannitol and dexamethasone. Lancet 1987; 1: 66-69
  • 45 Battison C, Andrews PJD, Graham C, Petty T. Randomized, controlled trial on the effect of a 20% mannitol solution and a 7,5% saline/6% dextran solution on increased intracranial pressure after brain injury. Crit Care Med discussion 2005; 33: 257-258
  • 46 Francony G, Fauvage B, Falcon D et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med 2008; 36: 795-800
  • 47 Kamel H, Navi BB, Nakagawa K et al. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med 2011; 39: 554-559
  • 48 Mortazavi MM, Romeo AK, Deep A et al. Hypertonic saline for treating raised intracranial pressure: literature review with meta-analysis. J Neurosurg 2012; 116: 210-221
  • 49 Cormio M, Citerio G. Continuous low dose diclofenac sodium infusion to control fever in neurosurgical critical care. Neurocrit Care 2007; 6: 82-89
  • 50 Puccio AM, Fischer MR, Jankowitz BT et al. Induced normothermia attenuates intracranial hypertension and reduces fever burden after severe traumatic brain injury. Neurocrit Care 2009; 11: 82-87
  • 51 Clifton GL, Allen S, Barrodale P et al. A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma discussion 1993; 10
  • 52 Marion DW, Obrist WD, Carlier PM et al. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 1993; 79: 354-362
  • 53 Clifton GL, Miller ER, Choi SC et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001; 344: 556-563
  • 54 Fox JL, Vu EN, Doyle-Waters M et al. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM 2010; 12: 355-364
  • 55 Peterson K, Carson S, Carney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J. Neurotrauma 2008; 25: 62-71
  • 56 Harris OA, Colford Jr. JM, Good MC, Matz PG. The role of hypothermia in the management of severe brain injury: a meta-analysis. Arch Neurol 2002; 59: 1077-1083
  • 57 Henderson WR, Dhingra VK, Chittock DR et al. Hypothermia in the management of traumatic brain injury. A systematic review and meta-analysis. Intensive Care Med 2003; 29: 1637-1644
  • 58 Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 2009; 37: 186-202
  • 59 Andrews PJD, Sinclair HL, Battison CG et al. European society of intensive care medicine study of therapeutic hypothermia (32–35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 2011; 12: 8-8
  • 60 Münch EC, Bauhuf C, Horn P et al. Therapy of malignant intracranial hypertension by controlled lumbar cerebrospinal fluid drainage. Crit Care Med 2001; 29: 976-981
  • 61 Abadal-Centellas JM, Llompart-Pou JA, Homar-Ramírez J et al. Neurologic outcome of posttraumatic refractory intracranial hypertension treated with external lumbar drainage. J Trauma discussion 2007; 62
  • 62 Tuettenberg J, Czabanka M, Horn P et al. Clinical evaluation of the safety and efficacy of lumbar cerebrospinal fluid drainage for the treatment of refractory increased intracranial pressure. J Neurosurg 2009; 110: 1200-1208
  • 63 Grady MS. Editorial. Lumbar drainage for increased intracranial pressure. J Neurosurg 2009; 110: 1198-1199
  • 64 Staykov D, Speck V, Volbers B et al. Early recognition of lumbar overdrainage by lumboventricular pressure gradient. Neurosurgery discussion 2011; 68 1191;
  • 65 Abadal JM, Llompart-Pou JA, Homar J et al. Lumbar drainage for intracranial pressure. J Neurosurg author reply 2009; 111: 1295-1296
  • 66 STITCH (Trauma) Trial. http://www.research.ncl.ac.uk/trauma.STITCH
  • 67 Li LM, Timofeev I, Czosnyka M, Hutchinson PJA. Review article: the surgical approach to the management of increased intracranial pressure after traumatic brain injury. Anesth Analg 2010; 111: 736-748
  • 68 Piek J. Decompressive surgery in the treatment of traumatic brain injury. Curr Opin Crit Care 2002; 8: 134-138
  • 69 Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma 2007; 24: 927-935
  • 70 Whitfield PC, Patel H, Hutchinson PJ et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg 2001; 15: 500-507
  • 71 Aarabi B, Hesdorffer DC, Ahn ES et al. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg 2006; 104: 469-479
  • 72 Bao Y-hui, Liang Y-min, Gao G-yi et al. Bilateral decompressive craniectomy for patients with malignant diffuse brain swelling after severe traumatic brain injury: a 37-case study. J Neurotrauma 2010; 27: 341-347
  • 73 Chibbaro S, Di Rocco F, Mirone G et al. Decompressive craniectomy and early cranioplasty for the management of severe head injury: a prospective multicenter study on 147 patients. World Neurosurg 2001; 75: 558-562
  • 74 Cooper DJ, Rosenfeld JV, Murray L et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2001; 364: 1493-1502
  • 75 Cooper DJ, Rosenfeld JV, Murray L et al. Early decompressive craniectomy for patients with severe traumatic brain injury and refractory intracranial hypertension – a pilot randomized trial. J Crit Care 2008; 23: 387-393
  • 76 Hutchinson PJ, Corteen E, Czosnyka M et al. Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study. www.RESCUEicp.com Acta Neurochir Suppl 2006; 96: 17-20
  • 77 Horsley SJ. The intracranial pressure during barbital narcosis. The Lancet 1937; 229: 141-143
  • 78 Rockoff MA, Marshall LF, Shapiro HM. High-dose barbiturate therapy in humans: a clinical review of 60 patients. Ann. Neurol 1979; 6: 194-199
  • 79 Eisenberg HM, Frankowski RF, Contant CF et al. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 1988; 69: 15-23
  • 80 Thorat JD, Wang EC, Lee KK et al. Barbiturate therapy for patients with refractory intracranial hypertension following severe traumatic brain injury: its effects on tissue oxygenation, brain temperature and autoregulation. J Clin Neurosci 2008; 15: 143-148
  • 81 Chen HI, Malhotra NR, Oddo M et al. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery discussion 2008; 63: 886-887
  • 82 Cormio M, Gopinath SP, Valadka A, Robertson CS. Cerebral hemodynamic effects of pentobarbital coma in head-injured patients. J. Neurotrauma 1999; 16: 927-936
  • 83 Seule MA, Muroi C, Mink S et al. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery discussion 2009; 64: 92-93
  • 84 Nadal P, Nicolás JM, Font C et al. Pneumonia in ventilated head trauma patients: the role of thiopental therapy. Eur J Emerg Med 1995; 2: 14-16
  • 85 Almaas R, Saugstad OD, Pleasure D, Rootwelt T. Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons. Anesthesiology 2000; 92: 764-774
  • 86 Cole DJ, Cross LM, Drummond JC et al. Thiopentone and methohexital, but not pentobarbitone, reduce early focal cerebral ischemic injury in rats. Can J Anaesth 2001; 48: 807-814
  • 87 Pérez-Bárcena J, Llompart-Pou JA, Homar J et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care 2008; 12
  • 88 Johnston AJ, Steiner LA, Chatfield DA et al. Effects of propofol on cerebral oxygenation and metabolism after head injury. Br J Anaesth 2003; 91: 781-786
  • 89 Albanèse J, Arnaud S, Rey M et al. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 1997; 87: 1328-1334
  • 90 Citerio G, Cormio M. Sedation in neurointensive care: advances in understanding and practice. Curr Opin Crit Care 2003; 9: 120-126
  • 91 Roberts I. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev CD 000033 2000;
  • 92 Tabaddor K, Danziger A, Wisoff HS. Estimation of intracranial pressure by CT scan in closed head trauma. Surg Neurol 1982; 18: 212-215
  • 93 Bratton SL, Chestnut RM, Ghajar J et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma (Suppl. 01) 2007; 24: 37-44
  • 94 Holliday 3rd PO, Kelly Jr DL, Ball M. Normal computed tomograms in acute head injury: correlation of intracranial pressure, ventricular size, and outcome. Neurosurgery 1982; 10: 25-28
  • 95 O'Sullivan MG, Statham PF, Jones PA et al. Role of intracranial pressure monitoring in severely head-injured patients without signs of intracranial hypertension on initial computerized tomography. J Neurosurg 1994; 80: 46-50
  • 96 Lang EW, Mehdorn HM, Dorsch NWC, Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatr 2002; 72: 583-586