Semin Thromb Hemost 2012; 38(02): 164-177
DOI: 10.1055/s-0032-1301414
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Coffee Intake and Cardiovascular Disease: Virtue Does Not Take Center Stage

Martina Montagnana
1   Sezione di Biochimica Clinica, Dipartimento di Scienze della Vita e della Riproduzione, Università di Verona, Verona, Italy
,
Emmanuel J. Favaloro
2   Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
,
Giuseppe Lippi
3   U.O. di Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Februar 2012 (online)

Abstract

Coffee is one of the most popular and heavily consumed beverages worldwide, despite the many different methods of preparation and presentation. The results of several epidemiological studies are suggestive for the existence of a U-shaped relationship between coffee consumption and both cardiovascular events and mortality, whereby a lower risk seems associated with low (i.e., less than one cup per day) or high (i.e., more than or equal to four cups per day) coffee intake, whereas a higher risk is reported for intermediate consumption (i.e., two to four cups per day). Most benefits are evident in individuals with a rapid caffeine metabolizer genotype and a low baseline cardiovascular risk. Benefits have also been differentially associated with consumption of decaffeinated coffee, filtered coffee, coffee consumption during lunchtime or dinner, and when coffee is produced in the Italian style (i.e., by espresso or moka). The leading favorable effects have been attributed to various compounds present in coffee. Thus, chlorogenic acids would be effective in decreasing blood pressure, systemic inflammation, risk of type 2 diabetes, and platelet aggregation, whereas caffeine intake has instead been associated with decreased body weight, as well as with increased flow-mediated dilatation and fibrinolysis.

 
  • References

  • 1 George SE, Ramalakshmi K, Mohan Rao LJ. A perception on health benefits of coffee. Crit Rev Food Sci Nutr 2008; 48 (5) 464-486
  • 2 Ramalakshmi K, Raghavan B. Caffeine in coffee: its removal. Why and how?. Crit Rev Food Sci Nutr 1999; 39 (5) 441-456
  • 3 Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 2006; 46 (2) 101-123
  • 4 Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr 2011; 51 (4) 363-373
  • 5 Wu JN, Ho SC, Zhou C , et al. Coffee consumption and risk of coronary heart diseases: a meta-analysis of 21 prospective cohort studies. Int J Cardiol 2009; 137 (3) 216-225
  • 6 Reis JP, Loria CM, Steffen LM , et al. Coffee, decaffeinated coffee, caffeine, and tea consumption in young adulthood and atherosclerosis later in life: the CARDIA study. Arterioscler Thromb Vasc Biol 2010; 30 (10) 2059-2066
  • 7 de Koning Gans JM, Uiterwaal CS, van der Schouw YT , et al. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler Thromb Vasc Biol 2010; 30 (8) 1665-1671
  • 8 Mineharu Y, Koizumi A, Wada Y , et al; JACC study Group. Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health 2011; 65 (3) 230-240
  • 9 Greenberg JA, Chow G, Ziegelstein RC. Caffeinated coffee consumption, cardiovascular disease, and heart valve disease in the elderly (from the Framingham Study). Am J Cardiol 2008; 102 (11) 1502-1508
  • 10 Nilsson LM, Wennberg M, Lindahl B, Eliasson M, Jansson JH, Van Guelpen B. Consumption of filtered and boiled coffee and the risk of first acute myocardial infarction; a nested case/referent study. Nutr Metab Cardiovasc Dis 2010; 20 (7) 527-535
  • 11 Zhang WL, Lopez-Garcia E, Li TY, Hu FB, van Dam RM. Coffee consumption and risk of cardiovascular events and all-cause mortality among women with type 2 diabetes. Diabetologia 2009; 52 (5) 810-817
  • 12 Lopez-Garcia E, Rodriguez-Artalejo F, Rexrode KM, Logroscino G, Hu FB, van Dam RM. Coffee consumption and risk of stroke in women. Circulation 2009; 119 (8) 1116-1123
  • 13 Larsson SC, Virtamo J, Wolk A. Coffee consumption and risk of stroke in women. Stroke 2011; 42 (4) 908-912
  • 14 Mostofsky E, Schlaug G, Mukamal KJ, Rosamond WD, Mittleman MA. Coffee and acute ischemic stroke onset: the Stroke Onset Study. Neurology 2010; 75 (18) 1583-1588
  • 15 Baylin A, Hernandez-Diaz S, Kabagambe EK, Siles X, Campos H. Transient exposure to coffee as a trigger of a first nonfatal myocardial infarction. Epidemiology 2006; 17 (5) 506-511
  • 16 Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006; 295 (10) 1135-1141
  • 17 Nawrot TS, Perez L, Künzli N, Munters E, Nemery B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 2011; 377 (9767) 732-740
  • 18 Lippi G, Plebani M, Cervellin G. Cocaine in acute myocardial infarction. Adv Clin Chem 2010; 51: 53-70
  • 19 Enga KF, Braekkan SK, Hansen-Krone IJ, Wilsgaard T, Hansen JB. Coffee consumption and the risk of venous thromboembolism: the Tromsø study. J Thromb Haemost 2011; 9 (7) 1334-1339
  • 20 Horst K, Robinson WD, Jenkins WL, Bao DL. The effect of caffeine, coffee and decaffeinated coffee upon blood pressure, pulse rate and certain motor reactions of normal young men. J Pharmacol Exp 1934; 52: 307-321
  • 21 Myers MG. Effects of caffeine on blood pressure. Arch Intern Med 1988; 148 (5) 1189-1193
  • 22 Nurminen ML, Niittynen L, Korpela R, Vapaatalo H. Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 1999; 53 (11) 831-839
  • 23 Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I. Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 2005; 28 (9) 711-718
  • 24 Ochiai R, Chikama A, Kataoka K , et al. Effects of hydroxyhydroquinone-reduced coffee on vasoreactivity and blood pressure. Hypertens Res 2009; 32 (11) 969-974
  • 25 Robertson D, Frölich JC, Carr RK , et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 1978; 298 (4) 181-186
  • 26 Lane JD, Adcock RA, Williams RB, Kuhn CM. Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption. Psychosom Med 1990; 52 (3) 320-336
  • 27 James JE. Is habitual caffeine use a preventable cardiovascular risk factor?. Lancet 1997; 349 (9047) 279-281
  • 28 Smits P, Lenders JW, Thien T. Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clin Pharmacol Ther 1990; 48 (4) 410-418
  • 29 Casiglia E, Bongiovì S, Paleari CD , et al. Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. J Intern Med 1991; 229 (6) 501-504
  • 30 Zhang Z, Hu G, Caballero B, Appel L, Chen L. Habitual coffee consumption and risk of hypertension: a systematic review and meta-analysis of prospective observational studies. Am J Clin Nutr 2011; 93 (6) 1212-1219
  • 31 Klag MJ, Wang NY, Meoni LA , et al. Coffee intake and risk of hypertension: the Johns Hopkins precursors study. Arch Intern Med 2002; 162 (6) 657-662
  • 32 Palatini P, Dorigatti F, Santonastaso M , et al. Association between coffee consumption and risk of hypertension. Ann Med 2007; 39 (7) 545-553
  • 33 Rakic V, Burke V, Beilin LJ. Effects of coffee on ambulatory blood pressure in older men and women: a randomized controlled trial. Hypertension 1999; 33 (3) 869-873
  • 34 Rachima-Maoz C, Peleg E, Rosenthal T. The effect of caffeine on ambulatory blood pressure in hypertensive patients. Am J Hypertens 1998; 11 (12) 1426-1432
  • 35 Lovallo WR, Pincomb GA, Sung BH, Passey RB, Sausen KP, Wilson MF. Caffeine may potentiate adrenocortical stress responses in hypertension-prone men. Hypertension 1989; 14 (2) 170-176
  • 36 Jee SH, He J, Whelton PK, Suh I, Klag MJ. The effect of chronic coffee drinking on blood pressure: a meta-analysis of controlled clinical trials. Hypertension 1999; 33 (2) 647-652
  • 37 Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 2005; 23 (5) 921-928
  • 38 Geleijnse JM. Habitual coffee consumption and blood pressure: an epidemiological perspective. Vasc Health Risk Manag 2008; 4 (5) 963-970
  • 39 Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC. Habitual caffeine intake and the risk of hypertension in women. JAMA 2005; 294 (18) 2330-2335
  • 40 Abernethy DR, Todd EL. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur J Clin Pharmacol 1985; 28 (4) 425-428
  • 41 Patwardhan RV, Desmond PV, Johnson RF, Schenker S. Impaired elimination of caffeine by oral contraceptive steroids. J Lab Clin Med 1980; 95 (4) 603-608
  • 42 Giggey PP, Wendell CR, Zonderman AB, Waldstein SR. Greater coffee intake in men is associated with steeper age-related increases in blood pressure. Am J Hypertens 2011; 24 (3) 310-315
  • 43 Hartley TR, Lovallo WR, Whitsett TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol 2004; 93 (8) 1022-1026
  • 44 Puccio EM, McPhillips JB, Barrett-Connor E, Ganiats TG. Clustering of atherogenic behaviors in coffee drinkers. Am J Public Health 1990; 80 (11) 1310-1313
  • 45 Arciero PJ, Gardner AW, Benowitz NL, Poehlman ET. Relationship of blood pressure, heart rate and behavioral mood state to norepinephrine kinetics in younger and older men following caffeine ingestion. Eur J Clin Nutr 1998; 52 (11) 805-812
  • 46 Farag NH, Whitsett TL, McKey BS , et al. Caffeine and blood pressure response: sex, age, and hormonal status. J Womens Health (Larchmt) 2010; 19 (6) 1171-1176
  • 47 Savoca MR, Evans CD, Wilson ME, Harshfield GA, Ludwig DA. The association of caffeinated beverages with blood pressure in adolescents. Arch Pediatr Adolesc Med 2004; 158 (5) 473-477
  • 48 Reddy JG, Ebbert JO, Klesges LM , et al. The relationship between caffeine and blood pressure in preadolescent African American girls. Ethn Dis 2008; 18 (3) 283-288
  • 49 Alpert JS. “Hey, doc, is it OK for me to drink coffee?”. Am J Med 2009; 122 (7) 597-598
  • 50 Fava C, Montagnana M, Favaloro EJ, Guidi GC, Lippi G. Obstructive sleep apnea syndrome and cardiovascular diseases. Semin Thromb Hemost 2011; 37 (3) 280-297
  • 51 De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost 2011; 37 (3) 226-236
  • 52 van der Post JA, Lok CA, Boer K, Sturk A, Sargent IL, Nieuwland R. The functions of microparticles in pre-eclampsia. Semin Thromb Hemost 2011; 37 (2) 146-152
  • 53 Lippi G, Franchini M, Favaloro EJ. Influenza and cardiovascular disease: does swine-origin, 2009 H1N1 flu virus represent a risk factor, an acute trigger, or both?. Semin Thromb Hemost 2010; 36 (1) 49-58
  • 54 Dentali F, Squizzato A, Ageno W. The metabolic syndrome as a risk factor for venous and arterial thrombosis. Semin Thromb Hemost 2009; 35 (5) 451-457
  • 55 Lippi G, Montagnana M, Favaloro EJ, Franchini M. Mental depression and cardiovascular disease: a multifaceted, bidirectional association. Semin Thromb Hemost 2009; 35 (3) 325-336
  • 56 Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109 (23, Suppl 1) III27-III32
  • 57 Buscemi S, Verga S, Batsis JA , et al. Dose-dependent effects of decaffeinated coffee on endothelial function in healthy subjects. Eur J Clin Nutr 2009; 63 (10) 1200-1205
  • 58 Buscemi S, Verga S, Batsis JA , et al. Acute effects of coffee on endothelial function in healthy subjects. Eur J Clin Nutr 2010; 64 (5) 483-489
  • 59 Papamichael CM, Aznaouridis KA, Karatzis EN , et al. Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clin Sci (Lond) 2005; 109 (1) 55-60
  • 60 Buscemi S, Batsis JA, Arcoleo G, Verga S. Coffee and endothelial function: a battle between caffeine and antioxidants?. Eur J Clin Nutr 2010; 64 (10) 1242-1243
  • 61 Parras P, Martinez-Tome M, Jimenez AM, Murcia MA. Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chem 2007; 102: 582-592
  • 62 Umemura T, Ueda K, Nishioka K , et al. Effects of acute administration of caffeine on vascular function. Am J Cardiol 2006; 98 (11) 1538-1541
  • 63 Lopez-Garcia E, van Dam RM, Qi L, Hu FB. Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am J Clin Nutr 2006; 84 (4) 888-893
  • 64 Spyridopoulos I, Fichtlscherer S, Popp R , et al. Caffeine enhances endothelial repair by an AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 2008; 28 (11) 1967-1974
  • 65 Toda E, Ishida H, Aoki T , et al. Possible mechanism of preventive effects of coffee intake on the formation of arterial occlusive thrombosis. Tokai J Exp Clin Med 2010; 35 (4) 133-136
  • 66 Shechter M, Shalmon G, Scheinowitz M , et al. Impact of acute caffeine ingestion on endothelial function in subjects with and without coronary artery disease. Am J Cardiol 2011; 107 (9) 1255-1261
  • 67 Srivastava S, Sithu SD, Vladykovskaya E , et al. Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis 2011; 215 (2) 301-308
  • 68 Suzuki A, Fujii A, Yamamoto N , et al. Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Lett 2006; 580 (9) 2317-2322
  • 69 Hiramoto K, Li X, Makimoto M, Kato T, Kikugawa K. Identification of hydroxyhydroquinone in coffee as a generator of reactive oxygen species that break DNA single strands. Mutat Res 1998; 419 (1-3) 43-51
  • 70 Kim AR, Zou Y, Kim HS , et al. Selective peroxynitrite scavenging activity of 3-methyl-1,2-cyclopentanedione from coffee extract. J Pharm Pharmacol 2002; 54 (10) 1385-1392
  • 71 Arsenault BJ, Earnest CP, Després JP, Blair SN, Church TS. Obesity, coffee consumption and CRP levels in postmenopausal overweight/obese women: importance of hormone replacement therapy use. Eur J Clin Nutr 2009; 63 (12) 1419-1424
  • 72 Kotani K, Tsuzaki K, Sano Y , et al. The relationship between usual coffee consumption and serum C-reactive protein level in a Japanese female population. Clin Chem Lab Med 2008; 46 (10) 1434-1437
  • 73 Andersen LF, Jacobs Jr DR, Carlsen MH, Blomhoff R. Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women’s Health Study. Am J Clin Nutr 2006; 83 (5) 1039-1046
  • 74 Maki T, Pham NM, Yoshida D , et al. The relationship of coffee and green tea consumption with high-sensitivity C-reactive protein in Japanese men and women. Clin Chem Lab Med 2010; 48 (6) 849-854
  • 75 Pham NM, Wang Z, Morita M , et al. Combined effects of coffee consumption and serum γ-glutamyltransferase on serum C-reactive protein in middle-aged and elderly Japanese men and women. Clin Chem Lab Med 2011; 49 (10) 1661-1667
  • 76 Schulze MB, Hoffmann K, Manson JE , et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 2005; 82 (3) 675-684, quiz 714–715
  • 77 Kempf K, Herder C, Erlund I , et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 2010; 91 (4) 950-957
  • 78 Thorand B, Kolb H, Baumert J , et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes 2005; 54 (10) 2932-2938
  • 79 Zampelas A, Panagiotakos DB, Pitsavos C, Chrysohoou C, Stefanadis C. Associations between coffee consumption and inflammatory markers in healthy persons: the ATTICA study. Am J Clin Nutr 2004; 80 (4) 862-867
  • 80 Gavrieli A, Yannakoulia M, Fragopoulou E , et al. Caffeinated coffee does not acutely affect energy intake, appetite, or inflammation but prevents serum cortisol concentrations from falling in healthy men. J Nutr 2011; 141 (4) 703-707
  • 81 Bonita JS, Mandarano M, Shuta D, Vinson J. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res 2007; 55 (3) 187-198
  • 82 Targher G, Chonchol M, Zoppini G, Franchini M. Hemostatic disorders in type 1 diabetes mellitus. Semin Thromb Hemost 2011; 37 (1) 58-65
  • 83 van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 2002; 360 (9344) 1477-1478
  • 84 Iso H, Date C, Wakai K, Fukui M, Tamakoshi A ; JACC Study Group. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 2006; 144 (8) 554-562
  • 85 Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, Yu MC. Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 2008; 88 (4) 979-985
  • 86 Oba S, Nagata C, Nakamura K , et al. Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 2010; 103 (3) 453-459
  • 87 Huxley R, Lee CM, Barzi F , et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 2009; 169 (22) 2053-2063
  • 88 Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia 2011; 54 (2) 320-328
  • 89 Zhang Y, Lee ET, Cowan LD, Fabsitz RR, Howard BV. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: the Strong Heart Study. Nutr Metab Cardiovasc Dis 2011; 21 (6) 418-423
  • 90 van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005; 294 (1) 97-104
  • 91 Paynter NP, Yeh HC, Voutilainen S , et al. Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 2006; 164 (11) 1075-1084
  • 92 Sartorelli DS, Fagherazzi G, Balkau B , et al. Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: the E3N/EPIC cohort study. Am J Clin Nutr 2010; 91 (4) 1002-1012
  • 93 Tunnicliffe JM, Shearer J. Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl Physiol Nutr Metab 2008; 33 (6) 1290-1300
  • 94 Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 2006; 166 (12) 1311-1316
  • 95 Hanhineva K, Törrönen R, Bondia-Pons I , et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11 (4) 1365-1402
  • 96 Rebello SA, Chen CH, Naidoo N , et al. Coffee and tea consumption in relation to inflammation and basal glucose metabolism in a multi-ethnic Asian population: a cross-sectional study. Nutr J 2011; 10: 61
  • 97 van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 2009; 32 (6) 1023-1025
  • 98 Arion WJ, Canfield WK, Ramos FC , et al. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys 1997; 339 (2) 315-322
  • 99 Muthusamy VS, Saravanababu C, Ramanathan M , et al. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory (Cichorium intybus) salad leaves. Br J Nutr 2010; 104 (6) 813-823
  • 100 Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 2005; 579 (7) 1653-1657
  • 101 Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003; 78 (4) 728-733
  • 102 Beaudoin MS, Graham TE. Methylxanthines and human health: epidemiological and experimental evidence. Handb Exp Pharmacol 2011; 200 (200) 509-548
  • 103 Mojiminiyi OA, Abdella NA. Effect of homeostasis model assessment computational method on the definition and associations of insulin resistance. Clin Chem Lab Med 2010; 48 (11) 1629-1634
  • 104 Williams CJ, Fargnoli JL, Hwang JJ , et al. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care 2008; 31 (3) 504-507
  • 105 Imatoh T, Tanihara S, Miyazaki M, Momose Y, Uryu Y, Une H. Coffee consumption but not green tea consumption is associated with adiponectin levels in Japanese males. Eur J Nutr 2011; 50 (4) 279-284
  • 106 Tuomainen TP, Lagundoye A, Voutilainen S. Coffee intake and glucose homeostasis: is there a role for body iron?. Arch Intern Med 2010; 170 (15) 1400-1401
  • 107 Biasucci LM, Biasillo G, Stefanelli A. Inflammatory markers, cholesterol and statins: pathophysiological role and clinical importance. Clin Chem Lab Med 2010; 48 (12) 1685-1691
  • 108 Saha SA, Arora RR. Hyperlipidaemia and cardiovascular disease: do fibrates have a role?. Curr Opin Lipidol 2011; 22 (4) 270-276
  • 109 Lippi G, Franchini M, Targher G. Screening and therapeutic management of lipoprotein(a) excess: review of the epidemiological evidence, guidelines and recommendations. Clin Chim Acta 2011; 412 (11-12) 797-801
  • 110 Thelle DS, Arnesen E, Førde OH. The Tromsø heart study. Does coffee raise serum cholesterol?. N Engl J Med 1983; 308 (24) 1454-1457
  • 111 Kark JD, Friedlander Y, Kaufmann NA, Stein Y. Coffee, tea, and plasma cholesterol: the Jerusalem Lipid Research Clinic prevalence study. Br Med J (Clin Res Ed) 1985; 291 (6497) 699-704
  • 112 Curb JD, Reed DM, Kautz JA, Yano K. Coffee, caffeine, and serum cholesterol in Japanese men in Hawaii. Am J Epidemiol 1986; 123 (4) 648-655
  • 113 Jansen DF, Nedeljkovic S, Feskens EJ , et al. Coffee consumption, alcohol use, and cigarette smoking as determinants of serum total and HDL cholesterol in two Serbian cohorts of the Seven Countries Study. Arterioscler Thromb Vasc Biol 1995; 15 (11) 1793-1797
  • 114 Jossa F, Krogh V, Farinaro E , et al. Coffee and serum lipids: findings from the Olivetti Heart Study. Ann Epidemiol 1993; 3 (3) 250-255
  • 115 Wei M, Macera CA, Hornung CA, Blair SN. The impact of changes in coffee consumption on serum cholesterol. J Clin Epidemiol 1995; 48 (10) 1189-1196
  • 116 Gyntelberg F, Hein HO, Suadicani P, Sørensen H. Coffee consumption and risk of ischaemic heart disease—a settled issue?. J Intern Med 1995; 237 (1) 55-61
  • 117 Thelle DS, Heyden S, Fodor JG. Coffee and cholesterol in epidemiological and experimental studies. Atherosclerosis 1987; 67 (2-3) 97-103
  • 118 Nystad T, Melhus M, Brustad M, Lund E. The effect of coffee consumption on serum total cholesterol in the Sami and Norwegian populations. Public Health Nutr 2010; 13 (11) 1818-1825
  • 119 Jee SH, He J, Appel LJ, Whelton PK, Suh I, Klag MJ. Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 2001; 153 (4) 353-362
  • 120 Bak AAA, Grobbee DE. The effect on serum cholesterol levels of coffee brewed by filtering or boiling. N Engl J Med 1989; 321 (21) 1432-1437
  • 121 Pietinen P, Aro A, Tuomilehto J, Uusitalo U, Korhonen H. Consumption of boiled coffee is correlated with serum cholesterol in Finland. Int J Epidemiol 1990; 19 (3) 586-590
  • 122 Tuomilehto J, Tanskanen A, Pietinen P , et al. Coffee consumption is correlated with serum cholesterol in middle-aged Finnish men and women. J Epidemiol Community Health 1987; 41 (3) 237-242
  • 123 Stensvold I, Tverdal A, Jacobsen BK. Cohort study of coffee intake and death from coronary heart disease over 12 years. BMJ 1996; 312 (7030) 544-545
  • 124 Pietinen P, Vartiainen E, Seppänen R, Aro A, Puska P. Changes in diet in Finland from 1972 to 1992: impact on coronary heart disease risk. Prev Med 1996; 25 (3) 243-250
  • 125 Ahola I, Jauhiainen M, Aro A. The hypercholesterolaemic factor in boiled coffee is retained by a paper filter. J Intern Med 1991; 230 (4) 293-297
  • 126 Urgert R, Katan MB. The cholesterol-raising factor from coffee beans. J R Soc Med 1996; 89 (11) 618-623
  • 127 van Dusseldorp M, Katan MB, Demacker PN. Effect of decaffeinated versus regular coffee on serum lipoproteins. A 12-week double-blind trial. Am J Epidemiol 1990; 132 (1) 33-40
  • 128 Naidoo N, Chen C, Rebello SA , et al. Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: a survey and cross sectional study. Nutr J 2011; 10: 48
  • 129 D’Amicis A, Scaccini C, Tomassi G, Anaclerio M, Stornelli R, Bernini A. Italian style brewed coffee: effect on serum cholesterol in young men. Int J Epidemiol 1996; 25 (3) 513-520
  • 130 van Tol A, Urgert R, de Jong-Caesar R , et al. The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans. Atherosclerosis 1997; 132 (2) 251-254
  • 131 Ricketts ML, Boekschoten MV, Kreeft AJ , et al. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol Endocrinol 2007; 21 (7) 1603-1616
  • 132 Lippi G, Franchini M. Pathogenesis of venous thromboembolism: when the cup runneth over. Semin Thromb Hemost 2008; 34 (8) 747-761
  • 133 Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011; 8 (9) 502-512
  • 134 Ardlie NG, Glew G, Schultz BG, Schwartz CJ. Inhibition and reversal of platelet aggregation by methyl xanthines. Thromb Diath Haemorrh 1967; 18 (3-4) 670-673
  • 135 Naismith DJ, Akinyanju PA, Szanto S, Yudkin J. The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr Metab 1970; 12 (3) 144-151
  • 136 Samarrae WA, Truswell AS. Short-term effect of coffee on blood fibrinolytic activity in healthy adults. Atherosclerosis 1977; 26 (2) 255-260
  • 137 Galli C, Colli S, Gianfranceschi G , et al. Acute effects of ethanol, caffeine, or both on platelet aggregation, thromboxane formation, and plasma-free fatty acids in normal subjects. Drug Nutr Interact 1984; 3 (1) 61-67
  • 138 Monti M, Edvinsson L, Ranklev E, Fletcher R. Methylxanthines reduce in vitro human overall platelet metabolism as measured by microcalorimetry. Acta Med Scand 1986; 220 (2) 185-188
  • 139 Bydlowski SP, Yunker RL, Rymaszewski Z, Subbiah MT. Coffee extracts inhibit platelet aggregation in vivo and in vitro. Int J Vitam Nutr Res 1987; 57 (2) 217-223
  • 140 Wojta J, Kirchheimer JC, Peska MG, Binder BR. Effect of caffein ingestion on plasma fibrinolytic potential. Thromb Haemost 1988; 59 (2) 337-338
  • 141 Bhaskar S, Rauf AA. Modulatory effect of coffee on platelet function. Indian J Physiol Pharmacol 2010; 54 (2) 141-148
  • 142 Naito S, Yatagai C, Maruyama M, Sumi H. Effect of coffee extracts on plasma fibrinolysis and platelet aggregation. Nihon Arukoru Yakubutsu Igakkai Zasshi 2011; 46 (2) 260-269
  • 143 Natella F, Nardini M, Belelli F , et al. Effect of coffee drinking on platelets: inhibition of aggregation and phenols incorporation. Br J Nutr 2008; 100 (6) 1276-1282
  • 144 Ammaturo V, Perricone C, Canazio A , et al. Caffeine stimulates in vivo platelet reactivity. Acta Med Scand 1988; 224 (3) 245-247
  • 145 Becker CG, Van Hamont N, Wagner M. Tobacco, cocoa, coffee, and ragweed: cross-reacting allergens that activate factor-XII-dependent pathways. Blood 1981; 58 (5) 861-867
  • 146 Bak AA, van Vliet HH, Grobbee DE. Coffee, caffeine and hemostasis: results from two randomized studies. Atherosclerosis 1990; 83 (2-3) 249-255
  • 147 Tsioufis C, Dimitriadis K, Vasiliadou C , et al. Heavy coffee consumption in conjunction with smoking is accompanied by increased inflammatory processes and impaired thrombosis/fibrinolysis system in essential hypertensive subjects. J Hum Hypertens 2006; 20 (6) 470-472
  • 148 Meltzer ME, Doggen CJ, de Groot PG, Rosendaal FR, Lisman T. The impact of the fibrinolytic system on the risk of venous and arterial thrombosis. Semin Thromb Hemost 2009; 35 (5) 468-477
  • 149 Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 2006; 83 (3) 674-680
  • 150 Greenberg JA, Boozer CN, Geliebter A. Coffee, diabetes, and weight control. Am J Clin Nutr 2006; 84 (4) 682-693
  • 151 Halkjaer J, Sørensen TI, Tjønneland A, Togo P, Holst C, Heitmann BL. Food and drinking patterns as predictors of 6-year BMI-adjusted changes in waist circumference. Br J Nutr 2004; 92 (4) 735-748
  • 152 Greenberg JA, Axen KV, Schnoll R, Boozer CN. Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 2005; 29 (9) 1121-1129
  • 153 Yamauchi R, Kobayashi M, Matsuda Y , et al. Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem 2010; 58 (9) 5597-5603
  • 154 van Dam RM. Coffee consumption and coronary heart disease: paradoxical effects on biological risk factors versus disease incidence. Clin Chem 2008; 54 (9) 1418-1420
  • 155 Lippi G, Franchini M, Favaloro EJ, Targher G. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”. Semin Thromb Hemost 2010; 36 (1) 59-70