Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(2): 92-100
DOI: 10.1055/s-0032-1304512
Fachwissen
Anästhesie & Intensivmedizin Topthema: Hämodynamisches Monitoring
© Georg Thieme Verlag Stuttgart · New York

Hämodynamisches Monitoring – Verbessertes Outcome durch erweitertes perioperatives hämodynamisches Monitoring

Effects of advanced haemodynamic monitoring on perioperative outcome in high-risk patients
Andreas Weyland
,
Thomas Scheeren
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. März 2012 (online)

Zusammenfassung

Ein erweitertes hämodynamisches Monitoring liefert fluss-, volumen- und stoffwechselbezogene Informationen, die in Verbindung mit hierauf basierenden Therapie-Algorithmen zur perioperativen Optimierung des Volumenstatus und des O2-Angebots genutzt werden können. Es besteht eine zunehmende Evidenz, dass eine solche zielgerichtete Therapie in definierten Patientengruppen die perioperative Morbidität und Mortalität senken kann. Dieser Beitrag gibt eine kurze Übersicht über die verschiedenen verfügbaren Zielparameter und ihren aktuellen Stellenwert im Kontext einer zielgerichteten hämodynamischen Optimierung von Risikopatienten.

Abstract

Advanced haemodynamic monitoring provides information on blood flow, volume status, and oxygen supply to demand ratio. Together with related therapeutic algorithms these variables can be used to optimize cardiac preload and oxygen delivery in the perioperative period. There is increasing evidence that a goal-directed therapy can improve perioperative outcome. In this review we will briefly describe different target variables and their relevance for the haemodynamic optimization of high-risk surgical patients.

Kernaussagen:

  • Ein erweitertes Monitoring liefert in Ergänzung zum anästhesiologischen Basismonitoring Informationen über fluss-, volumen- oder stoffwechselbezogene Determinanten der Hämodynamik. Diese umfassen insbesondere das Herzzeitvolumen (HZV), die kardiale Vorlast, die gemischt- oder zentralvenöse O2-Sättigung sowie Parameter der regionalen Gewebeoxygenierung.

  • Ein erweitertes hämodynamisches Monitoring ist nur sinnvoll in Verbindung mit Therapiealgorithmen, die auf die gemessenen Parameter Bezug nehmen.

  • Eine zielgerichtete hämodynamische Therapie (”goal-directed therapy“, GDT) ist ein Konzept, das Parameter eines erweiterten Monitorings nutzt, um durch eine individuell angepasste Optimierung des O2-Angebots (DO2) die perioperative Morbidität und Mortalität zu senken.

  • Das Ziel einer GDT ist es, durch eine angepasste Volumentherapie und ggf. durch die Anwendung von positiv inotropen Substanzen einer globalen oder regionalen O2-Schuld in der perioperativen Phase vorzubeugen.

  • Auswirkungen einer Hypovolämie auf die Herzfrequenz und den Blutdruck spiegeln nicht das Ausmaß eines Volumenverlusts wider und sind bei perioperativer Gabe vasoaktiver Medikamente nur bedingt interpretierbar.

  • Durch ein Monitoring der kardialen Vorlast sollen eine perioperative Hypovolämie und ihre negativen Auswirkungen auf das HZV verhindert werden, gleichzeitig jedoch auch einer unangepasst hohen Flüssigkeitszufuhr und den hieraus resultierenden Risiken vorgebeugt werden.

  • Aktuelle Metaanalysen zeigen, dass eine GDT in Verbindung mit einem erweiterten Monitoring perioperativ die Komplikationsrate und auch die Mortalität senken kann.

Ergänzendes Material

 
  • Literaturverzeichnis

  • 1 Rhodes A et al. Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Medicine 2010; 36: 1327-1332
  • 2 Shoemaker WC et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988; 94: 1176-1186
  • 3 Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Critical Care Medicine 2002; 30: 1692-1692
  • 4 Hamilton MA, Cecconi M, Rhodes A. A Systematic Review and Meta-Analysis on the Use of Preemptive Hemodynamic Intervention to Improve Postoperative Outcomes in Moderate and High-Risk Surgical Patients. Anesthesia Analgesia 2011; 112: 1392-1402
  • 5 Wittkowski U et al. Hämodynamisches Monitoring in der perioperativen Phase: Verfügbare Systeme, praktische Anwendung und klinische Daten. Anaesthesist 2009; 58: 80-86
  • 6 Huang YC. Monitoring oxygen delivery in the critically ill. Chest 2005; 128
  • 7 Torgersen C et al. Current approach to the haemodynamic management of septic shock patients in European intensive care units: a cross-sectional, self-reported questionnaire-based survey. European Journal of Anaesthesiology 2011; 28: 284-290
  • 8 Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge?. Curr Opin Crit Care 2011; 17: 290-295
  • 9 Brandfonbrener M, Landowne M, Shock NW. Changes in cardiac output with age. Circulation 1955; 12: 557-566
  • 10 Benes J et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Critical Care 2010; 14
  • 11 Goepfert MS et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Medicine 2007; 33: 96-103
  • 12 Kapoor PM et al. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth 2008; 11: 27-34
  • 13 Kumar A et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Critical Care Medicine 2004; 32: 691-699
  • 14 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172-178
  • 15 Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ. Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. Journal of Critical Care 1996; 11: 180-188
  • 16 Buhre W, Buhre K, Kazmaier S, Sonntag H, Weyland A. Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. European Journal of Anaesthesiology 2001; 18: 662-667
  • 17 Renner J et al. Global end-diastolic volume as a variable of fluid responsiveness during acute changing loading conditions. J Cardiothorac Vasc Anesth 2007; 21: 650-654
  • 18 Reuter DA, Goetz AE, Peter K. Einschätzung der Volumenreagibilität beim beatmeten Patienten. Anaesthesist 2003; 52: 10-13
  • 19 Renner J, Scholz J, Bein B. Monitoring fluid therapy. Best Pract Res Clin Anaesthesiol 2009; 23: 159-171
  • 20 Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine 2009; 37: 2642-2647
  • 21 Derichard A et al. Automated pulse pressure and stroke volume variations from radial artery: evaluation during major abdominal surgery. British Journal of Anaesthesia 2009; 103: 678-684
  • 22 Lopes MR et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 2007; 11
  • 23 Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesthesia Analgesia 2009; 109: 340-353
  • 24 Gardin JM et al. Relationship between age, body size, gender, and blood pressure and Doppler flow measurements in the aorta and pulmonary artery. American Heart Journal 1987; 113: 101-109
  • 25 Bloos F, Reinhart K. Venous oximetry. Intensive Care Medicine 2005; 31: 911-913
  • 26 van Beest P et al. Clinical review: use of venous oxygen saturations as a goal - a yet unfinished puzzle. Crit Care 2011; 15: 232-232
  • 27 Gattinoni L et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. New England Journal of Medicine 1995; 333: 1025-1032
  • 28 Pölönen P et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesthesia Analgesia 2000; 90: 1052-1059
  • 29 Varpula M, Karlsson S, Ruokonen E, Pettilä V. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Medicine 2006; 32: 1336-1343
  • 30 Rivers E et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine 2001; 345: 1368-1377
  • 31 Pope JV et al. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010; 55
  • 32 Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Medicine 2004; 30: 1572-1578
  • 33 Kim MB et al. Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 2000; 16: 191-199
  • 34 Edmonds Jr. HL. Protective effect of neuromonitoring during cardiac surgery. Ann N Y Acad Sci 2005; 1053: 12-19
  • 35 Yao FS et al. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18: 552-558
  • 36 Slater JP et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Annals of Thoracic Surgery 2009; 87: 36-44
  • 37 de Tournay-Jette E et al. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 2011; 25: 95-104
  • 38 Fischer GW et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. Journal of Thoracic and Cardiovascular Surgery 2011; 141: 815-821
  • 39 Murkin JM et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesthesia Analgesia 2007; 104: 51-58
  • 40 Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 2004; 7: 376-381
  • 41 Goldman SM et al. Outcome improvement and cost reduction in an increasingly morbid cardiac surgery population. Semin Cardiothorac Vasc Anesth 2006; 10: 171-175
  • 42 Casati A et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesthesia Analgesia 2005; 101: 740-747
  • 43 Murphy GS et al. Cerebral oxygen desaturation events assessed by near-infrared spectroscopy during shoulder arthroscopy in the beach chair and lateral decubitus positions. Anesthesia Analgesia 2010; 111: 496-505
  • 44 Crookes BA et al. Can near-infrared spectroscopy identify the severity of shock in trauma patients?. Journal of Trauma 2005; 58: 13-16
  • 45 Sagraves SG et al. Tissue oxygenation monitoring in the field: a new EMS vital sign. Journal of Trauma 2009; 67: 441-443
  • 46 Cohn SM et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. Journal of Trauma 2007; 62: 44-54
  • 47 Ikossi DG et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. Journal of Trauma 2006; 61: 780-788
  • 48 Putnam B et al. The correlation of near-infrared spectroscopy with changes in oxygen delivery in a controlled model of altered perfusion. Am Surg 2007; 73: 1017-1022
  • 49 Challand C et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. British Journal of Anaesthesia 2012; 108: 53-62
  • 50 Brienza N, Giglio MT, Marucci M, Fiore T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Critical Care Medicine 2009; 37: 2079-2090
  • 51 Boyd O, Jackson N. How is risk defined in high-risk surgical patient management?. Crit Care 2005; 9: 390-396
  • 52 Della Rocca G, Pompei L. Goal-directed therapy in anesthesia: any clinical impact or just a fashion?. Minerva Anestesiol 2011; 77: 545-553
  • 53 Bender JS, Smith-Meek MA, Jones CE. Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Annals of Surgery 1997; 226: 229-236
  • 54 Berlauk JF et al. Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. A prospective, randomized clinical trial. Annals of Surgery 1991; 214: 289-297
  • 55 Bishop MH et al. Prospective, randomized trial of survivor values of cardiac index, oxygen delivery, and oxygen consumption as resuscitation endpoints in severe trauma. Journal of Trauma 1995; 38: 780-787
  • 56 Bonazzi M et al. Impact of perioperative haemodynamic monitoring on cardiac morbidity after major vascular surgery in low risk patients. A randomised pilot trial. Eur J Vasc Endovasc Surg 2002; 23: 445-451
  • 57 Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. Journal of the American Medical Association 1993; 270: 2699-2707
  • 58 Lobo SM et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Critical Care Medicine 2000; 28: 3396-3404
  • 59 Lobo SM et al. Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients. Crit Care 2006; 10
  • 60 Pearse R et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care 2005; 9: 687-693
  • 61 Sandham JD et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. New England Journal of Medicine 2003; 348: 5-14
  • 62 Ueno S et al. Response of patients with cirrhosis who have undergone partial hepatectomy to treatment aimed at achieving supranormal oxygen delivery and consumption. Surgery 1998; 123: 278-286
  • 63 Valentine RJ et al. Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. Journal of Vascular Surgery 1998; 27: 203-211
  • 64 Wilson J et al. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 1999; 318: 1099-1103