Int J Sports Med 2013; 34(11): 945-949
DOI: 10.1055/s-0032-1304639
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Validity and Reliability of the G-Cog Device for Kinematic Measurements

X. Chiementin
1   Groupe de Recherche En Sciences Pour l’Ingénieur (GRESPI, EA4301), Université de Reims Champagne Ardenne, Reims, France
,
S. Crequy
1   Groupe de Recherche En Sciences Pour l’Ingénieur (GRESPI, EA4301), Université de Reims Champagne Ardenne, Reims, France
2   Laboratoire d’Analyse des Contraintes Mécaniques (LACM-DTI, EA 4302 LRC-CEA n° DSM0534), Université de Reims Champagne Ardenne, Reims, France
,
W. Bertucci
2   Laboratoire d’Analyse des Contraintes Mécaniques (LACM-DTI, EA 4302 LRC-CEA n° DSM0534), Université de Reims Champagne Ardenne, Reims, France
3   UFR STAPS, Université de Reims, Reims, France
› Author Affiliations
Further Information

Publication History



accepted after revision 23 January 2012

Publication Date:
13 May 2013 (online)

Abstract

The aim of this study was to test the validity and the reliability of the G-Cog which is a new BMX powermeter allowing for the measurements of the acceleration on X-Y-Z axis (250 Hz) at the BMX rear wheel. These measurements allow computing lateral, angular, linear acceleration, angular, linear velocity and the distance. Mechanical measurements at submaximal intensities in standardized laboratory conditions and during maximal exercises in the field conditions were performed to analyse the reliability of the G-Cog accelerometers. The performances were evaluated in comparison with an industrial accelerometer and with 2 powermeters, the SRM and PowerTap. Our results in laboratory conditions show that the G-Cog measurements have low value of variation coefficient (CV=2.35%). These results suggest that the G-cog accelerometers measurements are reproducible. The ratio limits of agreement of the rear hub angular velocity differences between the SRM and the G-Cog were 1.010 × ÷ 1.024 (95%CI=0.986–1.034) and between PowerTap and G-Cog were 0.993 × ÷ 1.019 (95%CI=0.974–1.012). In conclusion, our results suggest that the G-Cog angular velocity measurements are valid and reliable compared with SRM and PowerTap and could be used to analyse the kinematics during BMX actual conditions.

 
  • References

  • 1 Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26: 217-238
  • 2 Bertucci W, Hourde C. Laboratory testing and field performance in BMX riders. J Sports Sci Med 2011; 10: 417-419
  • 3 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
  • 4 Cavagna G, Saibene F, Margaria R. A three-directional accelerometer for analyzing body movements. J Appl Physiol 1961; 16: 191
  • 5 Chen KY, Bassett Jr DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 2005; 37: 490-500
  • 6 Cowell JF, Cronin JB, McGuigan MR. Time motion analysis of Supercross BMX Racing. J Sports Sci Med 2011; 10: 420-421
  • 7 Cowell JF, McGuigan MR, Cronin JB. Movement and skill analysis of supercross BMX. J Strength Cond Res 2011; Sep 14, in Press
  • 8 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 9 Jones SM, Passfield L. Dynamic calibration of bicycle power measuring cranks. In: Haake SJ. (ed.). The Engineering of Sport. Oxford: Blackwell Science; 1998: 265-274
  • 10 Mateo M, Blasco-Lafarga C, Fernández-Peña E, Zabala M. Efectos del sistema de pedaleo no circular q-ring sobre el rendimiento en el sprint de la disciplina ciclista bmx. Mot Eur J Hum Mov 2010; 25: 31-50
  • 11 Mateo M, Blasco-Lafarga C, Zabala M. Pedaling power and speed production vs. technical factors and track difficulty in bicycle motocross cycling. J Strength Cond Res 2011; 25: 3248-3256
  • 12 Napolitano MA, Borradaile KE, Lewis BA, Whiteley JA, Longval JL, Parisi AF, Albrecht AE, Sciamanna CN, Jakicic JM, Papandonatos GD, Marcus BH. Accelerometer use in a physical activity intervention trial. Contemp Clin Trials 2010; 31: 514-523
  • 13 Nevil AM. Why the analysis of performance variables recorded on a ratio scale will invariably benefit from a log transformation. J Sports Sci 1997; 15: 457-458
  • 14 Nevil AM, Atkinson G. Assessing agreement between measurements recorded on a ratio scale in sports medicine and sports science. Br J Sports Med 1997; 31: 314-318
  • 15 Olivares A, Olivares G, Mula F, Górria JM, Ramírez J. Wagyromag: Wireless sensor network for monitoring and processing human body movement in healthcare applications. J Syst Architect 2011; 57: 905-915
  • 16 Peiffer JJ, Losco B. Reliability/validity of the Fortius trainer. Int J Sports Med 2011; 32: 353-356
  • 17 Tarabini M, Saggin B, Scaccabarozzi D, Moschioni G. The potential of micro-electro-mechanical accelerometers in human vibration measurements. J Sound Vib 2012; 331: 487-499
  • 18 Troiano RP. Large-scale applications of accelerometers: new frontiers and new questions. Med Sci Sports Exerc 2007; 39: 1502-1508
  • 19 Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc 2005; 37: 582-588
  • 20 Zabala M, Sánchez-Muñoz C, Mateo M. Effects of the administration of feedback on performance of the BMX cycling gate start. J Sports Sci Med 2009; 8: 393-400