Dtsch Med Wochenschr 2012; 137(33): 1654-1658
DOI: 10.1055/s-0032-1305216
Prinzip & Perspektive | Review article
Pharmakologie
© Georg Thieme Verlag KG Stuttgart · New York

Kardiale Zwei-Porendomänen-Kaliumkanäle (K2P): Physiologie, Pharmakologie und therapeutisches Potenzial

Cardiac two-pore-domain potassium channels (K2P): Physiology, pharmacology, and therapeutic potential
C. Schmidt
1   Abteilung für Innere Medizin III – Kardiologie, Angiologie, Pneumologie, Medizinische Universitätsklinik Heidelberg, Heidelberg
,
F. Wiedmann
1   Abteilung für Innere Medizin III – Kardiologie, Angiologie, Pneumologie, Medizinische Universitätsklinik Heidelberg, Heidelberg
,
P. A. Schweizer
1   Abteilung für Innere Medizin III – Kardiologie, Angiologie, Pneumologie, Medizinische Universitätsklinik Heidelberg, Heidelberg
,
H. A. Katus
1   Abteilung für Innere Medizin III – Kardiologie, Angiologie, Pneumologie, Medizinische Universitätsklinik Heidelberg, Heidelberg
,
D. Thomas
1   Abteilung für Innere Medizin III – Kardiologie, Angiologie, Pneumologie, Medizinische Universitätsklinik Heidelberg, Heidelberg
› Author Affiliations
Further Information

Publication History

27 April 2012

13 July 2012

Publication Date:
08 August 2012 (online)

Zusammenfassung

Unkontrollierte elektrische Aktivität an Biomembranen von Kardiomyozyten kann Herzrhythmusstörungen verursachen. Trotz einiger Fortschritte in den vergangenen Jahren basiert die medikamentöse antiarrhythmische Therapie weiterhin überwiegend auf unselektiven Mechanismen, die zu begrenzter Wirksamkeit und Unverträglichkeiten führen. Es besteht daher ein Bedarf an neuen, spezifischeren Konzepten zur Pharmakotherapie kardialer Arrhythmien. So genannte Zwei-Porendomänen-Kaliumkanäle (K2P) leiten Kalium-Hintergrundströme und sind für die Stabilisierung des Ruhemembranpotentials sowie für die Generierung des Herzaktionspotentials von Bedeutung. Klinisch etablierte Wirkstoffe wie Amiodaron, Carvedilol und Dronedaron hemmen neben ihren primären Zielstrukturen auch kardiale K2P Kanäle. Diese Kanalfamilie stellt daher einen möglichen Angriffspunkt für die Entwicklung zukünftiger antiarrhythmischer Substanzen dar. Der aktuelle Stand der Forschung zu Funktion, Regulation und kardialem Stellenwert der K2P Kanäle ist Gegenstand dieser Arbeit.

Abstract

Uncontrolled electrical activity caused by ion channel dysfunction produces arrhythmia in the heart. Despite recent advances in pharmaceutical research and development, effective and safe pharmacological management of cardiac arrhythmia still remains an unmet medical need. The emerging family of two-pore-domain potassium (K2P) channels stabilizes the resting membrane potential and facilitates action potential repolarization. In the heart, genetic inactivation or inhibition of two-pore-domain K + (K2P) currents by class III antiarrhythmic drugs results in action potential prolongation. In particular, human K2P3.1 channels are selectively expressed in the atria and represent targets for the pharmacological management of atrial fibrillation. Furthermore, stretch-sensitive K2P2.1 channels are implicated in mechanoelectrical feedback and arrhythmogenesis. The current knowledge on function, regulation, and cardiac significance of K2P channels is summarized in this work, and potential therapeutic implications are highlighted.

 
  • Literatur

  • 1 Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 2005; 144: 317-322
  • 2 Barel O, Shalev SA, Ofir R et al. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 83: 193-199
  • 3 Chatelain P, Meysmans L, Mattéazzi JR et al. Interaction of the antiarrhythmic agents SR 33589 and amiodarone with the beta-adrenoceptor and adenylate cyclase in rat heart. Br J Pharmacol 1995; 116: 1949-1956
  • 4 Coburn CA, Luo Y, Cui M et al. Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K2P9.1 (TASK-3). Chem Med Chem 2012; 7: 123-133
  • 5 Cooper BY, Johnson RD, Rau KK. Characterization and function of TWIK-related acid sensing K+ channels in a rat nociceptive cell. Neuroscience 2004; 129: 209-224
  • 6 Decher N, Wemhöner K, Rinné S et al. Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cell Physiol Biochem 2011; 28: 77-86
  • 7 Donner BC, Schullenberg M, Geduldig N et al. Functional role of TASK-1 in the heart: studies in TASK-1 deficient mice show prolonged cardiac repolarization and reduced heart variability. Basic Res Cardiol 2011; 106: 75-87
  • 8 Friedrich C, Rinné S, Zumhagen S et al. K2P-Kaliumkanalgen KCNK17 (TASK-4): Erste Identifizierung einer Gain-of-function-Mutation bei einer angeborenen Überleitungsstörung. Clin Res Cardiol 2012; 101 (Suppl. 01) P984
  • 9 Gierten J, Ficker E, Bloehs R et al. Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 2008; 154: 1680-1690
  • 10 Gierten J, Ficker E, Bloehs R et al. The human cardiac K2P3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone. Naunyn Schmiedebergs Arch Pharmacol 2010; 381: 261-270
  • 11 Gierten J, Hassel D, Schweizer PA et al. Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biochim Biophys Acta 2012; 1818: 33-41
  • 12 Goldstein SAN, Bayliss DA, Kim D et al. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 2005; 57: 527-540
  • 13 Gurney A, Manoury B. Two-pore potassium channels in the cardiovascular system. Eur Biophys J 2009; 38: 305-318
  • 14 Gurney AM, Osipenko ON, MacMillan D et al. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 2003; 93: 957-964
  • 15 Hancox JC. Amiodarone blocks L-type calcium current in single myocytes isolated from the rabbit atrioventricular node. Gen Pharmacol 1997; 29: 429-435
  • 16 Heurteaux C, Guy N, Laigle C et al. TREK-1, a K(+) channel involved in neuroprotection and general anesthesia. Embo J 2004; 23: 2684-2695
  • 17 Hirota M, Ohtani H, Hanada E et al. Influence of extracellular K+ concentrations on quinidine-induced K+ current inhibition in rat ventricular myocytes. J Pharm Pharmacol 2000; 52: 99-105
  • 18 Honoré E. The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 2007; 8: 251-261
  • 19 Kamiya K, Nishiyama A, Yasui K et al. Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K(+) current. Circulation 2001; 103: 1317-1324
  • 20 Kang D, Choe C, Kim D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 2005; 564: 103-116
  • 21 Koumi S, Sato R, Hayakawa H et al. Quinidine blocks cardiac sodium current after removal of the fast inactivation process with chloramine-T. J Mol Cell Cardiol 1991; 23: 427-438
  • 22 Lafrenière RG, Cader MZ, Poulin JF et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 2010; 16: 1157-1160
  • 23 Lalevée N, Nargeot J, Barrére-Lemaire S et al. Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes. J Cardiovasc Electrophysiol 2003; 14: 885-890
  • 24 Leonoudakis D, Gray AT, Winegar BD et al. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci 1998; 18: 868-877
  • 25 Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000; 279: F793-F801
  • 26 Lesage F, Maingret F, Lazdunski M. Cloning and expression of human TRAAK, a polyunsatured fatty acids-activated and mechano-sensitive K(+) channel. FEBS Lett 2000; 471: 137-140
  • 27 Lesage F, Terrenoire C, Romey G et al. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000; 275: 28398-28405
  • 28 Limberg SH, Netter MF, Rolfes C et al. TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. Cell Physiol Biochem 2011; 28: 613-624
  • 29 Maingret F, Patel AJ, Lesage F et al. Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol Chem 2000; 275: 10128-10133
  • 30 Patel AJ, Honore E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 2001; 95: 1013-1021
  • 31 Putzke C, Wemhöner K, Sachse FB et al. The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 2007; 75: 59-68
  • 32 Rahm AK, Gierten J, Kisselbach J et al. Protein kinase C-dependent activation of human K2P18.1 K+ channels. Br J Pharmacol 2012; 166: 764-773
  • 33 Schmidt C, Wiedmann F, Schweizer PA et al. Novel electrophysiological properties of dronedarone: Inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol 2012; doi: 10.1007/s00210-012-0780-9
  • 34 Seyler C, Duthil-Straub E, Zitron E et al. TASK1 (K2P3.1) K+ current inhibition by endothelin-1 is mediated by Rho kinase-dependent channel phosphorylation. Br J Pharmacol 2012; 165: 1467-1475
  • 35 Staudacher K, Baldea I, Kisselbach J et al. Alternative splicing determines mRNA translation initiation and function of human K2P10.1 K+ channels. J Physiol 2011; 589: 3709-3720
  • 36 Staudacher K, Staudacher I, Ficker E et al. Carvedilol targets human K2P3.1 (TASK1) K+ leak channels. Br J Pharmacol 2011; 163: 1099-1110
  • 37 Streit AK, Netter MF, Kempf F et al. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore. J Biol Chem 2011; 286: 13977-13984
  • 38 Thomas D, Goldstein SAN. Two-P-domain (K2P) potassium channels: leak conductance regulators of excitability. Academic Press. In: Squire LR, editor. Encyclopedia of Neuroscience. Oxford: 2009: 1207-1220
  • 39 Thomas D, Plant LD, Wilkens CM et al. Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 2008; 58: 859-870
  • 40 Watanabe Y, Hara Y, Tamagawa M et al. Inhibitory effect of amiodarone on the muscarinic acetylcholine receptor-operated potassium current in guinea pig atrial cells. J Pharmacol Exp Ther 1996; 279: 617-624
  • 41 Xian Tao L, Dyachenko V, Zuzarte M et al. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 2006; 69: 86-97
  • 42 Yang T, Snyders DJ, Roden DM. Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res 1997; 80: 782-789