Gastroenterologie up2date 2012; 08(03): 166-171
DOI: 10.1055/s-0032-1310282
Technikreport
© Georg Thieme Verlag KG Stuttgart · New York

Virtuelle Färbeverfahren in der Endoskopie

Jörg G. Albert1
,
Irina Blumenstein1
,
Helmut Neumann2
Further Information

Publication History

Publication Date:
20 September 2012 (online)

Einführung

Eine Färbung der Schleimhaut des Gastrointestinaltraktes wird seit den 1960er und 1970er Jahren eingesetzt, um die optischen Möglichkeiten der fiberoptischen Endoskopie zu erweitern [1] [2]. Ziel der Färbung war bereits damals, die Detektion von Läsionen zu verbessern bzw. die Charakterisierung von entdeckten Befunden zu optimieren. Die intravitale Färbung durch Auftragen von Farbstoffen geht allerdings mit einem erhöhten Zeitaufwand einher, und ein Zurückkehren zum konventionellen weißlichtendoskopischen Bild ist nach Anfärben der Schleimhaut naturgemäß nicht mehr möglich. Es erscheint konsequent, dass Techniken entwickelt wurden, die diese chromoendoskopischen Effekte in das optische System des Endoskops selbst integrieren.

Technische Systeme. Derzeit stehen mehrere Systeme zur Verfügung, die durch optische Effekte eine Bildoptimierung leisten sollen: NBI (Narrow-Band Imaging, Olympus, Tokyo, Japan), FICE (Fujinon Intelligent Chromo Endoscopy, Fujifilm, Tokyo, Japan) und i-scan (Pentax, Tokyo, Japan) (Tab. [1, ]Abb. [1]). Dabei stellt Ersteres ein optisches Filterverfahren dar, die zwei Letzteren nehmen eine digitale Nachbearbeitung des Bildes vor (sog. digitales Postprocessing).

Tabelle 1

Virtuelle Färbemethoden in der flexiblen Endoskopie.

Virtuelle Färbemethode

Hersteller

Verarbeitung des Lichtsignals

NBI (Narrow-Band Imaging)

Olympus

Filterverfahren, Verwendung von Licht ausgewählter Lichtspektren

FICE (Fujinon Intelligent Chromo Endoscopy)

Fujinon / FujiFilm

digitale Nachbearbeitung des Bildsignals

i-scan

Pentax

digitale Nachbearbeitung des Bildsignals

AFI (Autofluorescence Imaging)

Olympus

Anregung endogener Fluorophore

Zoom Image
Zoom Image
Zoom Image
Abb. 1 Bildoptimierung durch chromoendoskopische Effekte. a Olympus. b FujiFilm. c Pentax.

Mit der NBI-Technik werden kleine mukosale Gefäße optimiert dargestellt und durch eine Einschätzung des Gefäßmusters („vascular pattern intensity“ oder „microvascular density“) wird die Charakterisierung des Befundes anhand dieser Kriterien ermöglicht [3]. Adenome des Kolons zeigen beispielsweise eine höhere kapilläre Dichte als hyperplastische Polypen. Die digitale Nachverarbeitung (FICE, i-scan) zielt ebenfalls darauf ab, die Oberflächenstrukturen optimiert wiederzugeben. Ein weiteres Verfahren, das AFI (Autofluorescence Imaging), bedient sich der Anregung endogener Fluorophore und soll als sog. „Rote-Flagge“-Technik die Aufmerksamkeit auf relevante Befunde leiten oder diese in ihrer Dignität einordnen helfen. Hierbei stellen sich beispielsweise Adenome des Kolons in Magenta dar, wohingegen hyperplastische Polypen grün abgebildet werden.

Einsatzgebiete virtueller endoskopischer Färbeverfahren
  • Detektion von Adenomen im Kolon

  • Charakterisierung detektierter Läsionen im Kolon (hyperplastisch vs. adenomatös)

  • Charakterisierung des Epithels bei Barrett-Ösophagus, Detektion hochgradiger intraepithelialer Neoplasien

  • Charakterisierung von Magenschleimhaut (neoplastisch, dysplastisch, normal)

  • Charakterisierung von ampullären Läsionen und Duodenaladenomen

  • Charakterisierung von Dünndarmläsionen (Kapselendoskopie)

1 Medizinische Klinik 1, Klinikum der J. W. Goethe-Universität, Frankfurt


2 Interventionelle Endoskopie, Medizinische Klinik 1, Universitätsklinikum Erlangen


 
  • Literatur

  • 1 Voegeli R. Die Schillersche Jodprobe im Rahmen der Ösophagusdiagnostik (Vorläufige Mitteilung). . Pract Otorhinolaryngol (Basel) 1966; 28: 230-239
  • 2 Suzuki S, Suzuki H, Endo M et al. Endoscopic diagnosis of early cancer and intestinal metaplasia of the stomach by dyeing. Int Surg 1973; 58: 639-642
  • 3 Gono K, Obi T, Yamaguchi M et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 2004; 9: 568-577
  • 4 Winawer SJ, Zauber AG, Ho MN. The National Polyp Study Workgroup et al. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med 1993; 329: 1977-1981
  • 5 Brenner H, Chang-Claude J, Seiler CM et al. Protection from colorectal cancer after colonoscopy: a population-based, case-control study. Ann Intern Med 2011; 154: 22-30
  • 6 Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 2007; 133: 42-47
  • 7 Brooker JC, Saunders BP, Shah SG et al. Total colonic dye-spray increases the detection of diminutive adenomas during routine colonoscopy: a randomized controlled trial. Gastrointest Endosc 2002; 56: 333-338
  • 8 Hurlstone DP, Cross SS, Slater R et al. Detecting diminutive colorectal lesions at colonoscopy: a randomised controlled trial of pan-colonic versus targeted chromoscopy. Gut 2004; 53: 376-380
  • 9 Apel D, Jakobs R, Schilling D et al. Accuracy of high-resolution chromoendoscopy in prediction of histologic findings in diminutive lesions of the rectosigmoid. Gastrointest Endosc 2006; 63: 824-828
  • 10 Le Rhun M, Coron E, Parlier D et al. High resolution colonoscopy with chromoscopy versus standard colonoscopy for the detection of colonic neoplasia: a randomized study. Clin Gastroenterol Hepatol 2006; 4: 349-354
  • 11 Chiu H, Chang C, Chen C et al. A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. Gut 2007; 56: 373-379
  • 12 Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc 2012; 75: 604-611
  • 13 Hoffman A, Sar F, Goetz M et al. High definition colonoscopy combined with i-Scan is superior in the detection of colorectal neoplasias compared with standard video colonoscopy: a prospective randomized controlled trial. Endoscopy 2010; 42: 827-833
  • 14 Sharma P, Hawes RH, Bansal A et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut 2012; [epub ahead of print]
  • 15 Adler A, Pohl H, Papanikolaou IS et al. A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect?. Gut 2008; 57: 59-64
  • 16 Inoue T, Murano M, Murano N et al. Comparative study of conventional colonoscopy and pan-colonic narrow-band imaging system in the detection of neoplastic colonic polyps: a randomized, controlled trial. J Gastroenterol 2008; 43: 45-50
  • 17 Adler A, Aschenbeck J, Yenerim T et al. Narrow-band versus white-light high definition television endoscopic imaging for screening colonoscopy: a prospective randomized trial. Gastroenterology 2009; 136: 410-416 e1; quiz 715
  • 18 Kaltenbach T, Friedland S, Soetikno R. A randomised tandem colonoscopy trial of narrow band imaging versus white light examination to compare neoplasia miss rates. Gut 2008; 57: 1406-1412
  • 19 Paggi S, Radaelli F, Amato A et al. The impact of narrow band imaging in screening colonoscopy: a randomized controlled trial. Clin Gastroenterol Hepatol 2009; 7: 1049-1054
  • 20 Gross SA, Buchner AM, Crook JE et al. A comparison of high definition-image enhanced colonoscopy and standard white-light colonoscopy for colorectal polyp detection. Endoscopy 2011; 43: 1045-1051
  • 21 Pohl J, Lotterer E, Balzer C et al. Computed virtual chromoendoscopy versus standard colonoscopy with targeted indigocarmine chromoscopy: a randomised multicentre trial. Gut 2009; 58: 73-78
  • 22 dos Santos CEO, Lima JCP, Lopes CV et al. Computerized virtual chromoendoscopy versus indigo carmine chromoendoscopy combined with magnification for diagnosis of small colorectal lesions: a randomized and prospective study. Eur J Gastroenterol Hepatol 2010; 22: 1364-1371
  • 23 Aminalai A, Rosch T, Aschenbeck J et al. Live image processing does not increase adenoma detection rate during colonoscopy: a randomized comparison between FICE and conventional imaging (Berlin Colonoscopy Project 5, BECOP-5). Am J Gastroenterol 2010; 105: 2383-2388
  • 24 Chung SJ, Kim D, Song JH et al. Efficacy of computed virtual chromoendoscopy on colorectal cancer screening: a prospective, randomized, back-to-back trial of Fuji Intelligent Color Enhancement versus conventional colonoscopy to compare adenoma miss rates. Gastrointest Endosc 2010; 72: 136-142
  • 25 Kiriyama S, Matsuda T, Nakajima T et al. Detectability of colon polyp using computed virtual chromoendoscopy with flexible spectral imaging color enhancement. Diagn Ther Endosc 2012; 2012: 596303
  • 26 Lee CK, Lee S, Hwangbo Y. Narrow-band imaging versus I-Scan for the real-time histological prediction of diminutive colonic polyps: a prospective comparative study by using the simple unified endoscopic classification. Gastrointest Endosc 2011; 74: 603-609
  • 27 Hong SN, Choe WH, Lee JH et al. Prospective, randomized, back-to-back trial evaluating the usefulness of i-SCAN in screening colonoscopy. Gastrointest Endosc 2012; 75: 1011-1021 e2
  • 28 Pohl J, Aschmoneit I, Schuhmann S et al. Computed image modification for enhancement of small-bowel surface structures at video capsule endoscopy. Endoscopy 2010; 42: 490-492
  • 29 Kim YS, Kim D, Chung SJ et al. Differentiating small polyp histologies using real-time screening colonoscopy with Fuji Intelligent Color Enhancement. Clin Gastroenterol Hepatol 2011; 9: 744-749 e1
  • 30 Sato R, Fujiya M, Watari J et al. The diagnostic accuracy of high-resolution endoscopy, autofluorescence imaging and narrow-band imaging for differentially diagnosing colon adenoma. Endoscopy 2011; 43: 862-868
  • 31 Lewis BS, Waye JD. Chronic gastrointestinal bleeding of obscure origin: role of small bowel enteroscopy. Gastroenterology 1988; 94: 1117-1120
  • 32 Rotondano G, Bianco MA, Sansone S et al. Trimodal endoscopic imaging for the detection and differentiation of colorectal adenomas: a prospective single-centre clinical evaluation. Int J Colorectal Dis 2012; 27: 331-336
  • 33 Takeuchi Y, Inoue T, Hanaoka N et al. Autofluorescence imaging with a transparent hood for detection of colorectal neoplasms: a prospective, randomized trial. Gastrointest Endosc 2010; 72: 1006-1013
  • 34 Matsuda T, Saito Y, Fu K et al. Does autofluorescence imaging videoendoscopy system improve the colonoscopic polyp detection rate? – a pilot study.. Am J Gastroenterol 2008; 103: 1926-1932
  • 35 Kessler WR, Imperiale TF, Klein RW et al. A quantitative assessment of the risks and cost savings of forgoing histologic examination of diminutive polyps. Endoscopy 2011; 43: 683-691
  • 36 Kuiper T, van den Broek FJC, Naber AH et al. Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy. Gastroenterology 2011; 140: 1887-1894
  • 37 Rastogi A, Keighley J, Singh V et al. High accuracy of narrow band imaging without magnification for the real-time characterization of polyp histology and its comparison with high-definition white light colonoscopy: a prospective study. Am J Gastroenterol 2009; 104: 2422-2430
  • 38 Ignjatovic A, East JE, Guenther T et al. What is the most reliable imaging modality for small colonic polyp characterization? Study of white-light, autofluorescence, and narrow-band imaging.. Endoscopy 2011; 43: 94-99
  • 39 Sharma P, Bansal A, Mathur S et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc 2006; 64: 167-175
  • 40 Kara MA, Ennahachi M, Fockens P et al. Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest Endosc 2006; 64: 155-166
  • 41 Singh R, Karageorgiou H, Owen V et al. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett’s oesophagus. Scand J Gastroenterol 2009; 44: 85-92
  • 42 Mannath J, Subramanian V, Hawkey CJ et al. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett’s esophagus: a meta-analysis. Endoscopy 2010; 42: 351-359
  • 43 Singh M, Bansal A, Curvers WL et al. Observer agreement in the assessment of narrowband imaging system surface patterns in Barrett’s esophagus: a multicenter study. Endoscopy 2011; 43: 745-751
  • 44 Silva FB, Dinis-Ribeiro M, Vieth M et al. Endoscopic assessment and grading of Barrett’s esophagus using magnification endoscopy and narrow-band imaging: accuracy and interobserver agreement of different classification systems (with videos). Gastrointest Endosc 2011; 73: 7-14
  • 45 Curvers WL, Herrero LA, Wallace MB et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology 2010; 139: 1106-1114
  • 46 Curvers WL, van Vilsteren FG, Baak LC et al. Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett’s neoplasia: a multicenter, randomized, crossover study in general practice. Gastrointest Endosc 2011; 73: 195-203
  • 47 Jung SW, Lim KS, Lim JU et al. Flexible spectral imaging color enhancement (FICE) is useful to discriminate among non-neoplastic lesion, adenoma, and cancer of stomach. Dig Dis Sci 2011; 56: 2879-2886
  • 48 Pimentel-Nunes P, Dinis-Ribeiro M, Soares JB et al. A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions. Endoscopy 2012; 44: 236-246
  • 49 Itoi T, Tsuji S, Sofuni A et al. A novel approach emphasizing preoperative margin enhancement of tumor of the major duodenal papilla with narrow-band imaging in comparison to indigo carmine chromoendoscopy (with videos). Gastrointest Endosc 2009; 69: 136-141
  • 50 Neumann H, Fry LC, Bellutti M et al. Double-balloon enteroscopy-assisted virtual chromoendoscopy for small-bowel disorders: a case series. Endoscopy 2009; 41: 468-471
  • 51 Imagawa H, Oka S, Tanaka S et al. Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: a pilot study. Scand J Gastroenterol 2011; 46: 1133-1137
  • 52 Gupta T, Ibrahim M, Deviere J et al. Evaluation of Fujinon intelligent chromo endoscopy-assisted capsule endoscopy in patients with obscure gastroenterology bleeding. World J Gastroenterol 2011; 17: 4590-4595
  • 53 Krystallis C, Koulaouzidis A, Douglas S et al. Chromoendoscopy in small bowel capsule endoscopy: Blue mode or Fuji Intelligent Colour Enhancement?. Dig Liver Dis 2011; 43: 953-957
  • 54 Imagawa H, Oka S, Tanaka S et al. Improved visibility of lesions of the small intestine via capsule endoscopy with computed virtual chromoendoscopy. Gastrointest Endosc 2011; 73: 299-306