Z Geburtshilfe Neonatol 2012; 216(03): 132-140
DOI: 10.1055/s-0032-1312670
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Neurologische und psychomotorische Entwicklung von Feten und Neugeborenen mit angeborenen Herzfehlern – Ursachen und Prävalenz von Störungen im Langzeitverlauf

Neurological and Psychomotor Development of Foetuses and Children with Congenital Heart Disease – Causes and Prevalence of Disorders and Long-Term Prognosis
U. Herberg
1   Abteilung für Kinderkardiologie, Universitätsklinikum Bonn
,
H. Hövels-Gürich
2   Klinik für Kinderkardiologie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen
› Author Affiliations
Further Information

Publication History

eingereicht 19 April 2012

angenommen nach Überarbeitung 28 April 2012

Publication Date:
21 June 2012 (online)

Zusammenfassung

Kinder mit schweren angeborenen Herzfehlern, die im Neugeborenen- oder Säuglingsalter mittels Herz-Lungen-Maschine operiert werden müssen, zeigen ein erhöhtes Risiko für neurologische und psychomotorische Entwicklungsstörungen. Defizite betreffen in der Regel Teilbereiche der Entwicklung und weniger die formale Intelligenz, sie treten in dieser Gruppe – abhängig von Schwere und Art des Herzfehlers – in 15% bis über 50% auf. Kinder mit leichteren Herzfehlern, die den wesentlichen Anteil angeborener Herzerkrankungen ausmachen, zeigen eine deutlich bessere Entwicklungsprognose als diejenigen mit komplexen Herzfehlern. In dieser Übersichtsarbeit werden der Einfluss schwerer Herzfehler auf das sich entwickelnde Zentralnervensystem des Feten und Neugeborenen diskutiert, aktuelle klinische und bildgebende Studien zusammengefasst und eine Übersicht über den neurologischen Langzeitverlauf gegeben. Bereits intrauterin ist – abhängig von Perfusion und Oxygenierung des Zentralnervensystems – die zerebrale Ausreifung verzögert und das Risiko für hypoxämische Schäden der weißen Substanz erhöht. Präoperativ finden sich relevante morphologische und neurologische Auffälligkeiten, die mit einer erhöhten Vulnerabilität der weißen Substanz korrelieren. Intrauterine, präoperative und zusätzliche perioperative Einflussfaktoren können langfristig zu einer relevanten Störung der psychomotorischen Entwicklung führen, wobei die subjektive Lebensqualität als gut empfunden wird. Neue therapeutische Ansätze zielen somit auf eine Optimierung der intrauterinen und perinatalen Versorgung von Feten und Neugeborenen mit angeborenen Herzfehlern. Die Vermeidung von negativen Einflussfaktoren auf die psychomotorische Entwicklung, konsequente Früherkennung und eine spezifische Förderung sollen zur Verbesserung des Langzeitverlaufes beitragen.

Abstract

Children with severe congenital heart defects (CHD) requiring open heart surgery in the first year of life are at high risk for developing neurological and psychomotor abnormalities. Depending on the type and severity of the CHD, between 15 and over 50% of these children have deficits, which are usually confined to distinct domains of development, although formal intelligence tends to be normal. Children with mild CHD, who comprise the majority of congenital heart defects, have a far better developmental prognosis than those with complex CHD. This review concentrates on the impact of severe CHD on the developing brain of the foetus and infant. It also provides a summary of recent clinical and neuroimaging studies, and an overview of the long-term neurological prognosis. Advanced neuroimaging modalities indicate that, related to altered cerebral blood flow and oxygenation, foetuses with severe CHD show delayed third trimester brain maturation and increased vulnerability for hypoxic injury. Morphological and neurological abnormalities are present before surgery, commonly affecting the white matter. In the long-term, impaired neurological and developmental outcomes are related to the combination of prenatal, perinatal and additional perioperative risk factors. Therefore, new therapeutic approaches aim to optimise the intra- and perinatal management of foetuses and newborns with congenital heart defects. Identification and avoidance of risk factors, early neurodevelopmental assessment and therapy may optimise the long-term outcome in this high-risk population.

 
  • Literatur

  • 1 Lindinger A, Schwedler G, Hense HW. Prevalence of congenital heart defects in newborns in Germany: Results of the first registration year of the PAN Study (July 2006 to June 2007). Klin Padiatr 2010; 222: 321-326
  • 2 Schwedler G, Lindinger A, Lange PE et al. Frequency and spectrum of congenital heart defects among live births in Germany: a study of the Competence Network for Congenital Heart Defects. Clin Res Cardiol 2011; 100: 1111-1117
  • 3 Schmaltz AA, Bauer U, Baumgartner H et al. Deutsch-Osterreichisch-Schweizerischen Kardiologischen Fachgesselschaften . Medizinische Leitlinie zur Behandlung von Erwachsenen mit angeborenen Herzfehlern (EMAH) der deutsch-österreichisch-schweizerischen kardiologischen Fachgesellschaften. Clin Res Cardiol 2008; 97: 194-214
  • 4 Hövels-Gürich HH. Psychomotorische Entwicklung von Kindern mit angeborenem Herzfehler. Monatsschrift Kinderheilkunde 2012; 160: 118-128
  • 5 McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol 2010; 29: 79-85
  • 6 Owen M, Shevell M, Majnemer A et al. Abnormal brain structure and function in newborns with complex congenital heart defects before open heart surgery: a review of the evidence. J Child Neurol 2011; 26: 743-755
  • 7 Donofrio MT, Duplessis AJ, Limperopoulos C. Impact of congenital heart disease on fetal brain development and injury. Curr Opin Pediatr 2011; 23: 502-511
  • 8 Rosenthal GL. Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol 1996; 143: 505-513
  • 9 Berg C, Gembruch O, Gembruch U et al. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect?. Ultrasound Obstet Gynecol 2009; 34: 666-672
  • 10 Limperopoulos C, Tworetzky W, McElhinney DB et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 26-33
  • 11 Riddle A, Luo NL, Manese M et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 2006; 26: 3045-3055
  • 12 Sanz-Cortés M, Figueras F, Bargalló N et al. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2010; 36: 159-165
  • 13 Figueras F, Oros D, Cruz-Martinez R et al. Neurobehavior in term, small-for-gestational age infants with normal placental function. Pediatrics 2009; 124: 934-941
  • 14 Cruz-Martinez R, Figueras F, Oros D et al. Cerebral blood perfusion and neurobehavioral performance in full-term small-for-gestational-age fetuses. Am J Obstet Gynecol 2009; 201: 474.e1-474.e7
  • 15 Oros D, Figueras F, Cruz-Martinez R et al. Middle versus anterior cerebral artery Doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2010; 35: 456-461
  • 16 Szwast A, Tian Z, McCann M et al. Comparative Analysis of Cerebrovascular Resistance in the Fetus with Single Ventricle Congenital Heart Disease. Ultrasound Obstet Gynecol 2012; Mar 9 (Epub ahead of print)
  • 17 Jouannic JM, Benachi A, Bonnet D et al. Middle cerebral artery Doppler in fetuses with transposition of the great arteries. Ultrasound Obstet Gynecol 2002; 20: 122-124
  • 18 Hernandez-Andrade E, Figueroa-Diesel H, Jansson T et al. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet Gynecol 2008; 32: 71-76
  • 19 Licht DJ, Shera DM, Clancy RR et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 2009; 137: 529-536
  • 20 Mahle WT, Tavani F, Zimmerman RA et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106: I109-I114
  • 21 Miller SP, McQuillen PS, Hamrick S et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 1928-1938
  • 22 Bellinger DC, Jonas RA, Rappaport LA et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549-555
  • 23 Bellinger DC, Wypij D, Kuban KC et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999; 100: 526-532
  • 24 Bellinger DC, Wypij D, duPlessis AJ et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126: 1385-1396
  • 25 Latal B, Helfricht S, Fischer JE et al. Psychological adjustment and quality of life in children and adolescents following open-heart surgery for congenital heart disease: a systematic review. BMC Pediatr 2009; 9: 6
  • 26 Kussman BD, Wypij D, Laussen PC et al. Relationship of intraoperative cerebral oxygen saturation to neurodevelopmental outcome and brain magnetic resonance imaging at 1 year of age in infants undergoing biventricular repair. Circulation 2010; 122: 245-254
  • 27 Soul JS, Robertson RL, Wypij D et al. Subtle hemorrhagic brain injury is associated with neurodevelopmental impairment in infants with repaired congenital heart disease. J Thorac Cardiovasc Surg 2009; 138: 374-381
  • 28 Tabbutt S, Nord AS, Jarvik GP et al. Neurodevelopmental outcomes after staged palliation for hypoplastic left heart syndrome. Pediatrics 2008; 121: 476-483
  • 29 Chen J, Zimmerman RA, Jarvik GP et al. Perioperative stroke in infants undergoing open heart operations for congenital heart disease. Ann Thorac Surg 2009; 88: 823-829
  • 30 McQuillen PS, Barkovich AJ, Hamrick SE et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 2007; 38: 736-741
  • 31 Galli KK, Zimmerman RA, Jarvik GP et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 692-704
  • 32 Licht DJ, Wang J, Silvestre DW et al. Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg 2004; 128: 841-849
  • 33 Latal B. Prediction of neurodevelopmental outcome after preterm birth. Pediatr Neurol 2009; 40: 413-419
  • 34 Wray J. Intellectual development of infants, children and adolescents with congenital heart disease. Dev Sci 2006; 9: 368-378
  • 35 Wernovsky G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young 2006; 16: 92-104
  • 36 Majnemer A, Limperopoulos C, Shevell M et al. Developmental and functional outcomes at school entry in children with congenital heart defects. J Pediatr 2008; 153: 55-60
  • 37 Majnemer A, Limperopoulos C, Shevell MI et al. A new look at outcomes of infants with congenital heart disease. Pediatr Neurol 2009; 40: 197-204
  • 38 von Rhein M, Scheer I, Loenneker T et al. Structural brain lesions in adolescents with congenital heart disease. J Pediatr 2011; 158: 984-989
  • 39 van der Rijken R, Hulstijn-Dirkmaat G, Kraaimaat F et al. Evidence of impaired neurocognitive functioning in school-age children awaiting cardiac surgery. Dev Med Child Neurol 2010; 52: 552-558
  • 40 van der Rijken R, Hulstijn-Dirkmaat G, Kraaimaat F et al. Open-Heart sugery at school age does not affect neurocognitive functioning. Eur Heart J 2008; 29: 2681-2688
  • 41 Hövels-Gürich HH, Konrad K, Skorzenski D et al. Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy. Ann Thorac Surg 2006; 81: 958-966
  • 42 Hövels-Gürich HH, Konrad K, Skorzenski D et al. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg 2007; 83: 1425-1430
  • 43 Hövels-Gürich HH, Konrad K, Skorzenski D et al. Long-term behaviour und quality of life after corrective cardiac surgery in infancy for tetralogy of Fallot or ventricular septal defect. Pediatr Cardiol 2007; 28: 378-386
  • 44 Hövels-Gürich HH, Bauer SB, Schnitker R et al. Long-term outcome of speech and language in children after corrective surgery for cyanotic or acyanotic cardiac defects in infancy. Eur J Paediatr Neurol 2008; 12: 378-386
  • 45 Bellinger DC, Newburger JW, Wypij D et al. Behaviour at eight years in children with surgically corrected transposition: The Boston Circulatory Arrest Trial. Cardiol Young 2009; 19: 86-97
  • 46 Hövels-Gürich HH, Seghaye MC, Däbritz S et al. Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg 1997; 114: 578-585
  • 47 Hövels-Gürich HH, Seghaye MC, Schnitker R et al. Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg 2002; 124: 448-458
  • 48 Hövels-Gürich HH, Konrad K, Wiesner M et al. Long term behavioural outcome after neonatal arterial switch operation for transposition of the great arteries. Arch Dis Child 2002; 87: 506-510
  • 49 Calderon J, Angeard N, Moutier S et al. Impact of Prenatal Diagnosis on Neurocognitive Outcomes in Children with Transposition of the Great Arteries. J Pediatr 2012; Jan 26 Epub ahead of print]
  • 50 Bellinger DC, Wypij D, Rivkin MJ et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 2011; 124: 1361-1369
  • 51 Hövels-Gürich HH, Heinrichs M, Schulze A et al. Lebensqualität junger Erwachsener nach Operation einer Transposition der großen Arterien – atriale versus arterielle Switchoperation. Abstract 41. Jahrestagung der Deutschen Gesellschaft für Pädiatrische Kardiologie. AVISO-Verlagsgesellschaft, Weimar 2009; S14
  • 52 Mahle WT, Clancy RR, Moss EM et al. Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics 2000; 105: 1082-1089
  • 53 Goldberg CS, Schwartz EM, Brunberg JA et al. Neurodevelopmental outcome of patients after the fontan operation: A comparison between children with hypoplastic left heart syndrome and other functional single ventricle lesions. J Pediatr 2000; 137: 646-652
  • 54 Hagemo PS, Skarbø AB, Rasmussen M et al. An extensive long term follow-up of a cohort of patients with hypoplasia of the left heart. Cardiol Young 2007; 17: 51-55
  • 55 Shillingford AJ, Glanzman MM, Ittenbach RF et al. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008; 121: e759-e767
  • 56 Hoffman GM, Mussatto KA, Brosig CL et al. Systemic venous oxygen saturation after the Norwood procedure and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg 2005; 130: 1094-1100
  • 57 Brosig CL, Mussatto KA, Kuhn EM et al. Psychosocial outcomes for preschool children and families after surgery for complex congenital heart disease. Pediatr Cardiol 2007; 28: 255-262
  • 58 Mahle WT, Visconti KJ, Freier MC et al. Relationship of surgical approach to neurodevelopmental outcomes in hypoplastic left heart syndrome. Pediatrics 2006; 117: e90-e97
  • 59 Visconti KJ, Rimmer D, Gauvreau K et al. Regional low-flow perfusion versus circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac Surg 2006; 82: 2207-2211
  • 60 Atallah J, Dinu IA, Joffe AR et al. tWestern Canadian Complex Pediatric Therapies Follow-Up Group . Two-year survival and mental and psychomotor outcomes after the Norwood procedure: an analysis of the modified Blalock-Taussig shunt and right ventricle-to-pulmonary artery shunt surgical eras. Circulation 2008; 118: 1410-1418
  • 61 Moons Ph. Better than expected?! Why persons with congenital heart disease can have a better quality of life than healthy people. ISBN 978-90-818248-0-4 www.lulu.com 2011
  • 62 Gill TM, Feinstein AR. A critical appraisal of the quality of quality-of-life measurements. JAMA 1994; 272: 619-626
  • 63 Jenkins PC, Chinnock RE, Jenkins KJ et al. Decreased exercise performance with age in children with hypoplastic left heart syndrome. J Pediatr 2008; 152: 507-512 Epub 2007 Nov 19. PubMed PMID: 18346505
  • 64 Hövels-Gürich HH. Positionspapier. http://www.kinderkardiologie.org/dgpkAG_PSAG.shtml