TumorDiagnostik & Therapie 2012; 33(4): 213-218
DOI: 10.1055/s-0032-1312851
Thieme Onkologie aktuell
© Georg Thieme Verlag KG Stuttgart · New York

Konventionelle nuklearmedizinische Diagnostik neuroendokriner Neoplasien

Conventional Nuclear Medicine Diagnostic Procedures in Neuroendocrine Neoplasia
H. Amthauer
1   Klinik für Radiologie und Nuklearmedizin, Bereich Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R., Otto-von-Guericke-Universität Magdeburg
,
G. Ulrich
1   Klinik für Radiologie und Nuklearmedizin, Bereich Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R., Otto-von-Guericke-Universität Magdeburg
,
J. Ruf
1   Klinik für Radiologie und Nuklearmedizin, Bereich Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R., Otto-von-Guericke-Universität Magdeburg
› Author Affiliations
Further Information

Publication History

Publication Date:
15 June 2012 (online)

Zusammenfassung

Die nuklearmedizinische Diagnostik besitzt einen hohen Stellenwert für die Primärtumorsuche, das Staging und Re-Staging sowie die Therapieplanung und -kontrolle bei neuroendokrinen Neoplasien. Wie in der PET-Bildgebung neuroendokriner Neoplasien dominiert auch in der konventionellen Diagnostik die Somatostatinrezeptorszintigrafie. Analog zur PET-Bildgebung sind auch hier durch den Einsatz moderner Hybridgeräte (SPECT-CT) deutliche Verbesserungen der Diagnostik zu erzielen. Darüber hinaus erlaubt der Einsatz der SPECT-CT eine Optimierung der Dosimetrie und des Therapiemonitorings von Radionuklidtherapien (Peptidradiorezeptor- oder MIBG-Therapie). Die vorliegende Arbeit spiegelt den aktuellen Stand der konventionellen nuklearmedizinischen Diagnostik wider und gibt einen Ausblick auf weitere Entwicklungen.

Abstract

Nuclear medicine has a decisive role in the primary search, staging and restaging as well as therapy planning and control of neuroendocrine neoplasms. Similar to PET-Imaging, conventional scintigraphy is dominated by somatostatin receptor scintigraphy, the diagnostic performance of which has been greatly improved by the introduction of hybrid-scanners (SPECT-CT). Moreover, SPECT-CT allows a further improvement of dosimetry and monitoring of radionuclide therapies (peptide radioreceptor- or MIBG-therapy).

The present article reflects the current level of performance of conventional scintigraphy and gives a prospect on further developments.

 
  • Literatur

  • 1 Amthauer H, Denecke T, Rohlfing T et al. Value of image fusion using single photon emission computed tomography with integrated low dose computed tomography in comparison with a retrospective voxel-based method in neuroendocrine tumours. Eur Radiol 2005; 15: 1456-1462
  • 2 Amthauer H, Ruf J, Rösch T et al. Bildgebung bei neuroendokrinen Tumoren. Onkologe 2004; 10: 588-597
  • 3 Asnacios A, Courbon F, Rochaix P et al. Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression : new prognostic factors for malignant well-differentiated endocrine tumors. J Clin Oncol 2008; 26: 963-970
  • 4 Bombardieri E, Giammarile F, Aktolun C et al. 131I/123I-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010; 37: 2436-2446
  • 5 Bombardieri E, Ambrosini V, Aktolun C et al. 111In- pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010; 37: 1441-1448
  • 6 Bushnell DL, Baum RP. Standard imaging techniques for neuroendocrine tumors. Endocrinol Metab Clin North Am 2011; 40: 153-162
  • 7 Even-Sapir E, Keidar Z, Sachs J et al. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasmas. J Nucl Med 2001; 42: 998-1004
  • 8 Gabriel M, Decristoforo C, Donnemiller E et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 2003; 44: 708-716
  • 9 Garin E, Le Jeune F, Devillers A et al. Predictive value of 18F-FDG-PET and somatostatin receptor scintigraphy in patients with metastastic endocrine tumors. J Nucl Med 2009; 50: 858-864
  • 10 Granberg D, Sundin A, Janson ET et al. Octreoscan in patients with bronchial carcinoid tumours. Clin Endocrinol 2003; 59: 793-799
  • 11 Hill JS, McPhee JT, McDade TP et al. Pancreatic neuroendocrine tumors: the impact of surgical resection on survival. Cancer 2009; 115: 741-751
  • 12 Kaltsas G, Korbonits M, Heintz E et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab 2001; 86: 895-902
  • 13 Kwekkeboom DJ, Krenning EP, Scheidhauer K et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with (111)In-pentreotide. Neuroendocrinology 2009; 90: 184-189
  • 14 Nakajo M, Shapiro B, Copp J et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131] iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med 1983; 24: 672-682
  • 15 Oberg K, Castellano D. Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev 2011; 30 (Suppl. 01) 3-7
  • 16 Oberg K, Eriksson B. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours. Best Prac Res Clin Endocrinol Metab 2005; 19: 265-276
  • 17 Pfannenberg AC, Eschmann SM, Horger M et al. Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 2003; 30: 835-843
  • 18 Reisinger I, Bohuslavitzki KH, Brenner W et al. Somatostatin receptor scintigraphy in small-cell lung cancer: results of a multicenter study. J Nucl Med 1998; 39: 224-227
  • 19 Ricke J, Klose KJ, Mignon M et al. Standardisation of imaging in neuroendocrine tumours: results of a European Delphi process. Eur J Radiol 2001; 37: 8-17
  • 20 Righi L, Volante M, Tavaglione V et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol 2010; 21: 545-555
  • 21 Ruf J, Heuck F, Schiefer J et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 2010; 91: 101-109
  • 22 Ruf J, Schiefer J, Furth C et al. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J Nucl Med 2011; 52: 697-704
  • 23 Ruf J, Steffen I, Mehl S et al. Influence of attenuation correction by integrated low-dose CT on somatostatin receptor SPECT. Nucl Med Commun 2007; 28: 782-788
  • 24 Scarpa M, Prando D, Pozza A et al. A systematic review of diagnostic procedure sto detect midgut neuroendocrine tumors. J Surg Oncol 2010; 102: 877-888
  • 25 Schillaci O, Danieli R, Manni C et al. Is SPECT/CT with a hybrid camera useful to improve scintigraphic imaging interpretation?. Nucl Med Commun 2004; 25: 705-710
  • 26 Solanki KK, Bomanji J, Moyes J et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992; 13: 513-521
  • 27 Steffen I, Mehl S, Heuck F et al. Attenuation correction of somatostatin receptor SPECT by integrated low-dose CT: Is there an impact on sensitivity?. Clin Nucl Med 2009; 34: 869-873
  • 28 Wild D, Fani M, Behe M et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 2011; 52: 1412-1417
  • 29 Wong KK, Wynn EA, Myles J et al. Comparison of single time-point [111-In] pentrotide SPECT/CT with dual time-point imaging of neuroendocrine tumors. Clin Nucl Med 2011; 36: 25-31
  • 30 Yao JC, Hassan M, Phan A et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United states. J Clin Oncol 2008; 26: 3063-3072