Subscribe to RSS
DOI: 10.1055/s-0032-1312865
Humanes Beta-Defensin 1: Aus der Defensive gelockt
Human beta-Defensin 1: From Defence to OffencePublication History
21 February 2012
04 May 2012
Publication Date:
13 November 2012 (online)
Zusammenfassung
Der Darm eines erwachsenen Menschen enthält etwa ein Kilogramm kommensale Bakterien. Diese Mikroorganismen stellen eine potenzielle Bedrohung dar, sodass ein effizientes Abwehrsystem essenziell zur Verhinderung von bakterieller Translokation und Infektionen ist. Neben anderen Verteidigungsmechanismen produziert der Mensch antimikrobielle Peptide (AMPs) als körpereigene Antibiotika, die in der Lage sind, Mikroorganismen abzutöten. Die wichtigste Gruppe der humanen AMPs sind die Defensine. Unter diesen spielt das humane β-Defensin 1 (hBD-1) eine entscheidende Rolle, denn es wird konstitutiv von allen Epithelien produziert. Allerdings war die biologische Funktion des hBD-1 lange unklar, denn im Gegensatz zu anderen AMPs zeigte es in vitro kaum antibiotische Aktivität. Jedoch sind verschiedene Erkrankungen mit genetischen Polymorphismen im hBD-1-Gen assoziiert. Hier diskutieren wir, warum die wahre Aktivität von hBD-1 bislang übersehen wurde und wie hBD-1 durch chemische Reduktion aktiviert werden kann. Wir erörtern die biologische Bedeutung der Aktivierung und die Bedeutung für chronisch-entzündliche Darmerkrankungen.
Abstract
The human gut is colonised by about one kilogram of commensal bacteria. These microorganisms are a potential threat, thus an efficient defence system is crucial in preventing bacterial translocation and infection. Besides other mechanisms of protection humans produce antimicrobial peptides (AMPs) that are able to kill a broad range of microorganisms. The human beta-defensin 1 (hBD-1) plays a major role because it is produced constitutively by all human epithelia and some immune cells. In contrast to other AMPs, however, the biological function of hBD-1 has remained unclear since the antibiotic activity of hBD-1 in vitro was only marginal. But still, several diseases have been associated with genetic polymorphisms in the hBD-1 encoding gene. Herein we discuss why the biological role of hBD-1 has been overlooked and how hBD-1 can be activated by chemical reduction. We elaborate on the biological significance of this activation and its importance for inflammatory bowel disease.
-
Literatur
- 1 Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31: 107-133
- 2 Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635-1638
- 3 Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-484
- 4 Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-124
- 5 Arumugam M, Raes J, Pelletier E et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-254
- 6 Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011; 9: 279-290
- 7 Ley RE, Turnbaugh PJ, Klein S et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-1023
- 8 Larsen N, Vogensen FK, van den Berg FWJ et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010; 5: e9085
- 9 Frank DN, St Amand AL, Feldman RA et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. USA 2007; 104: 13780-13785
- 10 Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134: 577-594
- 11 Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 2007; 104: 13146-13151
- 12 Louis P, Scott KP, Duncan SH et al. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2007; 102: 1197-1208
- 13 Vaishnava S, Behrendt CL, Ismail AS et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 2008; 105: 20858-20863
- 14 Salzman NH, Hung K, Haribhai D et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010; 11: 76-83
- 15 Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 1992; 4: 3-7
- 16 Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999; 11: 23-27
- 17 Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710-720
- 18 Harder J, Gläser R, Schröder JM. Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 2007; 13: 317-338
- 19 Lehrer RI, Ganz T, Selsted ME. Defensins: endogenous antibiotic peptides of animal cells. Cell 1991; 64: 229-230
- 20 Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 1995; 58: 128-136
- 21 Ericksen B, Wu Z, Lu W et al. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 2005; 49: 269-275
- 22 Porter EM, Liu L, Oren A et al. Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 1997; 65: 2389-2395
- 23 Wehkamp J, Chu H, Shen B et al. Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett 2006; 580: 5344-5350
- 24 Bensch KW, Raida M, Mägert HJ et al. hBD-1: a novel beta-defensin from human plasma. FEBS Lett 1995; 368: 331-335
- 25 Zhao C, Wang I, Lehrer RI. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 1996; 396: 319-322
- 26 Harder J, Bartels J, Christophers E et al. A peptide antibiotic from human skin. Nature 1997; 387: 861
- 27 Harder J, Bartels J, Christophers E et al. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276: 5707-5713
- 28 Kraemer BF, Campbell RA, Schwertz H et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7: e1002355
- 29 Valore EV, Park CH, Quayle AJ et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 1998; 101: 1633-1642
- 30 Voss E, Wehkamp J, Wehkamp K et al. NOD2 / CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 2006; 281: 2005-2011
- 31 Schlee M, Harder J, Köten B et al. Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 2008; 151: 528-535
- 32 Peyrin-Biroulet L, Beisner J, Wang G et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc Natl Acad Sci USA 2010; 107: 8772-8777
- 33 Tollin M, Bergman P, Svenberg T et al. Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 2003; 24: 523-553
- 34 Nuding S, Zabel LT, Enders C et al. Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3. Microbes Infect 2009; 11: 384-393
- 35 Ozturk A, Famili P, Vieira AR. The antimicrobial peptide DEFB1 is associated with caries. J Dent Res 2010; 89: 631-636
- 36 Schaefer AS, Richter GM, Nothnagel M et al. A 3’ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 2010; 11: 45-54
- 37 Kocsis AK, Lakatos PL, Somogyvári F et al. Association of beta-defensin 1 single nucleotide polymorphisms with Crohn’s disease. Scand J Gastroenterol 2008; 43: 299-307
- 38 Lehrer RI, Rosenman M, Harwig SS et al. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 1991; 137: 167-173
- 39 Wilson M. Microbial Inhabitants of Humans – Their Ecology and Role in Health and Disease. University College London: Cambridge University Press; 2005
- 40 Schroeder BO, Wu Z, Nuding S et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 2011; 469: 419-423
- 41 Lehrer RI. Immunology: Peptide gets in shape for self-defence. Nature 2011; 469: 309-310
- 42 Nagy E. Anaerobic infections: update on treatment considerations. Drugs 2010; 70: 841-858
- 43 Holmgren A. Enzymatic reduction-oxidation of protein disulfides by thioredoxin. Meth Enzymol 1984; 107: 295-300
- 44 Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989; 264: 13963-13966
- 45 Rubartelli A, Bajetto A, Allavena G et al. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 1992; 267: 24161-24164
- 46 Sido B, Giese T, Autschbach F et al. Potential role of thioredoxin in immune responses in intestinal lamina propria T lymphocytes. Eur J Immunol 2005; 35: 408-417
- 47 Curbo S, Gaudin R, Carlsten M et al. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides. Biochem Biophys Res Commun 2009; 390: 1272-1277
- 48 Magalhaes JG, Tattoli I, Girardin SE. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol 2007; 19: 106-115
- 49 Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8: 411-420
- 50 Wehkamp J, Salzman NH, Porter E et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 2005; 102: 18129-18134
- 51 Nuding S, Fellermann K, Wehkamp J et al. Reduced mucosal antimicrobial activity in Crohn’s disease of the colon. Gut 2007; 56: 1240-1247
- 52 Wehkamp J, Koslowski M, Wang G et al. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol 2008; 1 (Suppl. 01) S67-S74
- 53 Perminow G, Beisner J, Koslowski M et al. Defective paneth cell-mediated host defense in pediatric ileal Crohn’s disease. Am J Gastroenterol 2010; 105: 452-459
- 54 Tamaki H, Nakamura H, Nishio A et al. Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 2006; 131: 1110-1131
- 55 Scudiero O, Galdiero S, Cantisani M et al. Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 2010; 54: 2312-2322