Der Nuklearmediziner 2012; 35(02): 82-92
DOI: 10.1055/s-0032-1314790
Neurodegenerative Erkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

Demenzdiagnostik mit der Amyloid-PET

Amyloid-Imaging for Diagnosis of Dementia
A. Drzezga
1   Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München
,
S. Förster
1   Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2012 (online)

Zusammenfassung

Moderne Erkrankungsmodelle der Neurodegeneration gehen davon aus, dass die vermehrte Produktion spezifischer Proteine und deren pathologische Ablagerung im Gehirn früh im Erkrankungsprozess vieler neurodegenerativer Erkrankungen steht. Im Fall der Alzheimer-Erkrankung, welche die häufigste Ursache neurodegenerativer Demenzen darstellt, handelt sich dabei um die extrazellulären Ablagerungen des β-Amyloid-Peptids (sog. Amyloid-Plaques) und intrazelluläre Aggregationen des Tau-Proteins (sog. neurofibrilläre Tangles). Speziell der Amyloid-Pathologie wird aktuell eine mögliche kausale Rolle in der Entwicklung der Alzheimer-Demenz zugesprochen, und verschiedene moderne Therapieansätze wie die Immunisierungs-Strategien oder bestimmte Enzyminhibitoren sind gegen diese Pathologie ausgerichtet.

Es ergibt sich allerdings ein diagnostisches Dilemma durch den Umstand, dass sich die Amyloid-Pathologie, wie auch andere neuropathologische Veränderungen bei der Alzheimer-Erkrankung, Jahre bis Jahrzehnte vor Einsetzen der klinischen Demenzsymptomatik zu entwickeln scheinen. Dies limitiert die Frühdiagnose der Erkrankung erheblich und verhindert damit auch den Einsatz neuer Therapieformen in einem frühen Stadium, d. h. vor der Entwicklung ausgedehnter irreversibler neuronaler Schäden. Auch die Differenzialdiagnose verschiedener Demenzerkrankungen ist auf der Basis der klinisch/neuropsychologischen Beurteilung nicht immer zuverlässig möglich, da sich Überlappungen der Symptomatik ergeben. Nicht zuletzt behindert die symptomatische Fluktuation und die langsame Entwicklung der Erkrankung auch die Verlaufsbeobachtung bzw. das Therapiemonitoring.

Die schlechte Zugänglichkeit des Gehirngewebes hat bisher bedingt, dass eine sichere Diagnose der Alzheimer-Pathologie nur durch den histopathologischen Nachweis der Amyloidplaques und der neurofibrillären Tangles in Post-mortem-Analysen des Gehirngewebes gestellt werden konnte. Mit modernen Tracern für die Positronen-Emissions-Tomografie (PET) stehen nun erstmals Methoden der molekularen Bildgebung zur Verfügung, die es ermöglichen, Amyloid-Plaque Ablagerungen im Gehirn in vivo nachzuweisen. Diese Methoden eröffnen die Möglichkeit, neurodegenerative Demenzerkrankungen auf der Basis der zugrunde liegenden Pathologie zu charakterisieren, anstelle der rein klinisch-symptomatischen Diagnostik. Diese Art der „In-vivo-Histopathologie“ bietet eine außergewöhnliche Möglichkeit zur Frühdiagnostik und zur Differenzialdiagnostik verschiedener neurodegenerativer Syndrome. Besonders bietet sich dies für die Patientenselektion für Therapiestudien an, die sich spezifisch gegen die Amyloid-Plaque-Pathologie richten, sowie auch zur objektiven Verlaufskontrolle unter Therapie.

Abstract

Modern disease models of neurodegeneration suggest that increased production and aggregation of specific proteins in the brain is an early event of neurodegeneration. In the case of Alzheimer’s disease extracellular aggregates of the β-amyloid peptide (amyloid-plaques) and intracellular aggregates of Tau-protein (neurofibrillary tangles) are key pathologies. Amyloid aggregation is considered to play a potentially causal role in the development of Alzheimer’s disease and modern therapy approaches such as immunization and secretase-inhibitors are directed towards this pathology.

A diagnostic dilemma can be found in the circumstance that amyloid-aggregation pathology seems to develop years to decades ahead of the onset of clinical symptoms. This limits early diagnosis and the initiation of therapy in stages ahead of irreversible neuronal damage. Also, differential diagnosis is limited due to the overlap of clinical symptoms. Symptomatic fluctuation and slow progression of the disorder inhibits follow-up and therapy monitoring. Due to the limited access to brain tissue a definite diagnosis of Alzheimer’s disease was usually only possible by post mortem histopathological evaluation of brain tissue.

Modern tracers for Positron Emission Tomography (PET) finally allow the detection of cerebral amyloid-pathology in vivo. These methods open new opportunities to classify neurodegenerative disorders on the basis of underlying pathology rather than by the symptomatic appearance. This new type of “in vivo histopathology” may improve early and differential diagnosis of various neurodegenerative syndromes. Particularly the method may be indispensable for patient selection and follow-up in specific therapy trials.

 
  • Literatur

  • 1 Aizenstein HJ, Nebes RD, Saxton JA et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65 (11) 1509-1517
  • 2 Alafuzoff I. The pathology of dementias: an overview. Acta Neurol Scand Suppl 1992; 139: 8-15
  • 3 Albert MS, DeKosky ST, Dickson D et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7 (03) 270-279
  • 4 Bacskai BJ, Frosch MP, Freeman SH et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 2007; 64 (03) 431-434
  • 5 Barthel H, Gertz HJ, Dresel S et al. Cerebral amyloid-beta PET with florbetaben (18 F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10 (05) 424-435
  • 6 Barthel H, Luthardt J, Becker G et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer’s disease and healthy controls. Eur J Nucl Med Mol Imaging 38 (09) 1702-1714
  • 7 Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep 2010; 10 (06) 484-490
  • 8 Boyle PA, Wilson RS, Aggarwal NT et al. Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology 2006; 67 (03) 441-445
  • 9 Braak E, Griffing K, Arai K et al. Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer?. Eur Arch Psychiatry Clin Neurosci 1999; 249 (Suppl. 03) 14-22
  • 10 Brooks DJ. Imaging amyloid in Parkinson’s disease dementia and dementia with Lewy bodies with positron emission tomography. Mov Disord 2009; 24 (Suppl. 02) S742-S747
  • 11 Burack MA, Hartlein J, Flores HP et al. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 2010; 74 (01) 77-84
  • 12 Cairns NJ, Ikonomovic MD, Benzinger T et al. Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 2009; 66 (12) 1557-1562
  • 13 Choi SR, Schneider JA, Bennett DA et al. Correlation of amyloid PET ligand florbetapir F 18 binding with Abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord 2012; 26 (01) 8-16
  • 14 Choi SR, Golding G, Zhuang Z et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 2009; 50 (11) 1887-1894
  • 15 Claassen DO, Lowe VJ, Peller PJ et al. Amyloid and glucose imaging in dementia with Lewy bodies and multiple systems atrophy. Parkinsonism Relat Disord 2011; 17 (03) 160-165
  • 16 Clark CM, Schneider JA, Bedell BJ et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011; 305 (03) 275-283
  • 17 Crutch SJ, Lehmann M, Schott JM et al. Posterior cortical atrophy. Lancet Neurol 2012; 11 (02) 170-178
  • 18 Cselenyi Z, Jonhagen ME, Forsberg A et al. Clinical validation of 18 F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med 2012; 53 (03) 415-424
  • 19 Davies L, Wolska B, Hilbich C et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988; 38 (11) 1688-1693
  • 20 Davies RR, Hodges JR, Kril JJ et al. The pathological basis of semantic dementia. Brain 2005; 128 (Pt 9) 1984-1995
  • 21 de Souza LC, Corlier F, Habert MO et al. Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer’s disease. Brain 2011; 134 (Pt 7) 2036-2043
  • 22 Delso G, Furst S, Jakoby B et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52 (12) 1914-1922
  • 23 Devanand DP, Pradhaban G, Liu X et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 2007; 68 (11) 828-836
  • 24 Diehl-Schmid J, Grimmer T, Drzezga A et al. Longitudinal changes of cerebral glucose metabolism in semantic dementia. Dement Geriatr Cogn Disord 2006; 22 (04) 346-3451
  • 25 Drzezga A. Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl. 01) S4-S11
  • 26 Drzezga A, Grimmer T, Henriksen G et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 2009; 72 (17) 1487-1494
  • 27 Drzezga A, Souvatzoglou M, Eiber M et al. First Clinical Experience with Integrated Whole-Body PET/MR: Comparison to PET/CT in Patients with Oncologic Diagnoses. J Nucl Med 2012;
  • 28 Drzezga A, Grimmer T, Henriksen G et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 2008; 39 (02) 619-633
  • 29 Drzezga A, Becker JA, Van Dijk KR et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 2011; 134 (Pt 6) 1635-1646
  • 30 Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6 (08) 734-746
  • 31 Edison P, Rowe CC, Rinne JO et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 2008; 79 (12) 1331-1338
  • 32 Engler H, Santillo AF, Wang SX et al. In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 2007;
  • 33 Engler H, Forsberg A, Almkvist O et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;
  • 34 Fagan AM, Holtzman DM. Cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 2010; 4 (01) 51-63
  • 35 Fagan AM, Mintun MA, Mach RH et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59 (03) 512-519
  • 36 Fleisher AS, Chen K, Liu X et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 2011; 68 (11) 1404-1411
  • 37 Fodero-Tavoletti MT, Rowe CC, McLean CA et al. Characterization of PiB binding to white matter in Alzheimer disease and other dementias. J Nucl Med 2009; 50 (02) 198-204
  • 38 Fodero-Tavoletti MT, Brockschnieder D, Villemagne VL et al. In vitro characterization of [(18)F]-florbetaben, an Abeta imaging radiotracer. Nucl Med Biol 2012;
  • 39 Fodero-Tavoletti MT, Smith DP, McLean CA et al. In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci 2007; 27 (39) 10365-10371
  • 40 Formaglio M, Costes N, Seguin J et al. In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol 2011; 258 (10) 1841-1851
  • 41 Forsberg A, Engler H, Almkvist O et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2007;
  • 42 Forster S, Grimmer T, Miederer I et al. Regional Expansion of Hypometabolism in Alzheimer’s Disease Follows Amyloid Deposition with Temporal Delay. Biol Psychiatry 2011;
  • 43 Foster ER, Campbell MC, Burack MA et al. Amyloid imaging of Lewy body-associated disorders. Mov Disord 2010; 25 (15) 2516-2523
  • 44 Grimmer T, Riemenschneider M, Forstl H et al. Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 2009; 65 (11) 927-934
  • 45 Grimmer T, Tholen S, Yousefi BH et al. Progression of cerebral amyloid load is associated with the apolipoprotein E epsilon4 genotype in Alzheimer’s disease. Biol Psychiatry 68 (10) 879-884
  • 46 Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256 (5054) 184-185
  • 47 Herrmann N, Chau SA, Kircanski I et al. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs 2011; 71 (15) 2031-2065
  • 48 Hsiao IT, Huang CC, Hsieh CJ et al. Correlation of early-phase (18)F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging 2012; 39 (04) 613-620
  • 49 Neary D, Snowden JS, Gustafson L et al. Epidemiology of frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 2004; 17 (04) 265-268
  • 50 Ikonomovic MD, Klunk WE, Abrahamson EE et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 2008; 131 (Pt 6) 1630-1645
  • 51 Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002; 16 (08) 515-525
  • 52 Jack Jr CR, Lowe VJ, Senjem ML et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 2008; 131 (Pt 3) 665-680
  • 53 Johansson A, Savitcheva I, Forsberg A et al. [(11)C]-PIB imaging in patients with Parkinson’s disease: preliminary results. Parkinsonism Relat Disord 2008; 14 (04) 345-347
  • 54 Johnson JK, Diehl J, Mendez MF et al. Frontotemporal lobar degeneration: demografic characteristics of 353 patients. Arch Neurol 2005; 62 (06) 925-930
  • 55 Johnson KA, Gregas M, Becker JA et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007; 62 (03) 229-234
  • 56 Joshi AD, Pontecorvo MJ, Clark CM et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med 2012; 53 (03) 378-384
  • 57 Jureus A, Swahn BM, Sandell J et al. Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand. J Neurochem 2010; 114 (03) 784-794
  • 58 Kadir A, Marutle A, Gonzalez D et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain 2011; 134 (Pt 1) 301-317
  • 59 Kalaitzakis ME, Walls AJ, Pearce RK et al. Striatal Abeta peptide deposition mirrors dementia and differentiates DLB and PDD from other parkinsonian syndromes. Neurobiol Dis 2011; 41 (02) 377-384
  • 60 Kawachi T, Ishii K, Sakamoto S et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2006; 33 (07) 801-809
  • 61 Klunk WE, Price JC, Mathis CA et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 2007; 27 (23) 6174-6184
  • 62 Klunk WE, Engler H, Nordberg A et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55 (03) 306-319
  • 63 Koivunen J, Scheinin N, Virta JR et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 2011; 76 (12) 1085-1090
  • 64 Leinonen V, Alafuzoff I, Aalto S et al. Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch Neurol 2008; 65 (10) 1304-1309
  • 65 Leyton CE, Villemagne VL, Savage S et al. Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain 2011; 134 (Pt 10) 3030-3043
  • 66 Li Y, Rinne JO, Mosconi L et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2008; 35 (12) 2169-2181
  • 67 Lister-James J, Pontecorvo MJ, Clark C et al. Florbetapir f-18: a histopathologically validated Beta-amyloid positron emission tomography imaging agent. Semin Nucl Med 2011; 41 (04) 300-304
  • 68 Lockhart A, Lamb JR, Osredkar T et al. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 2007; 130 (Pt 10) 2607-2615
  • 69 Maetzler W, Reimold M, Liepelt I et al. [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 2008; 39 (03) 1027-1033
  • 70 Maetzler W, Liepelt I, Reimold M et al. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 2009; 34 (01) 107-712
  • 71 McKeith IG, Dickson DW, Lowe J et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65 (12) 1863-1872
  • 72 Mesulam M, Wieneke C, Rogalski E et al. Quantitative template for subtyping primary progressive aphasia. Arch Neurol 2009; 66 (12) 1545-1551
  • 73 Meyer PT, Hellwig S, Amtage F et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med 2011; 52 (03) 393-400
  • 74 Mintun MA, Larossa GN, Sheline YI et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67 (03) 446-452
  • 75 Mormino EC, Kluth JT, Madison CM et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009; 132 (Pt 5) 1310-1323
  • 76 Morris JC, Roe CM, Xiong C et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 2010; 67 (01) 122-131
  • 77 Neary D, Snowden JS, Gustafson L et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998; 51 (06) 1546-1554
  • 78 Neary D, Snowden JS, Mann DM. Classification and description of frontotemporal dementias. Ann N Y Acad Sci 2000; 920 46-51
  • 79 Nestor PJ, Caine D, Fryer TD et al. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PE. J Neurol Neurosurg Psychiatry 2003; 74 (11) 1521-1529
  • 80 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrofic lateral sclerosis. Science 2006; 314 (5796) 130-133
  • 81 Ng S, Villemagne VL, Berlangieri S et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18 F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 2007; 48 (04) 547-552
  • 82 Okello A, Koivunen J, Edison P et al. Conversion of amyloid positive and negative MCI to AD over 3 years. An 11C-PIB PET study. Neurology 2009;
  • 83 Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256 (03) 183-194
  • 84 Pike KE, Savage G, Villemagne VL et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 2007; 130 (Pt 11) 2837-2844
  • 85 Price JC, Klunk WE, Lopresti BJ et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005; 25 (11) 1528-1547
  • 86 Rabinovici GD, Furst AJ, O’Neil JP et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007; 68 (15) 1205-1212
  • 87 Rabinovici GD, Jagust WJ, Furst AJ et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008; 64 (04) 388-401
  • 88 Rabinovici GD, Rosen HJ, Alkalay A et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011; 77 (23) 2034-2042
  • 89 Reiman EM, Chen K, Liu X et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2009; 106 (16) 6820-6825
  • 90 Remes AM, Laru L, Tuominen H et al. Carbon 11-labeled pittsburgh compound B positron emission tomografic amyloid imaging in patients with APP locus duplication. Arch Neurol 2008; 65 (04) 540-544
  • 91 Rinne JO, Brooks DJ, Rossor MN et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010; 9 (04) 363-372
  • 92 Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med 2011; 52 (11) 1733-1740
  • 93 Rowe CC, Ellis KA, Rimajova M et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31 (08) 1275-1283
  • 94 Rowe CC, Ng S, Ackermann U et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68 (20) 1718-1725
  • 95 Sadowski M, Pankiewicz J, Scholtzova H et al. Links between the pathology of Alzheimer’s disease and vascular dementia. Neurochem Res 2004; 29 (06) 1257-1266
  • 96 Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298 (5594) 789-791
  • 97 Selkoe DJ. Folding proteins in fatal ways. Nature 2003; 426 (6968) 900-904
  • 98 Shi J, Shaw CL, Du Plessis D et al. Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation. Acta Neuropathol (Berl) 2005; 110 (05) 501-512
  • 99 Snowden JS. Semantic dysfunction in frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 1999; 10 (Suppl. 01) 33-36
  • 100 Sojkova J, Driscoll I, Iacono D et al. In vivo fibrillar beta-amyloid detected using [11C]PiB positron emission tomography and neuropathologic assessment in older adults. Arch Neurol 2011; 68 (02) 232-240
  • 101 Thompson PW, Ye L, Morgenstern JL et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem 2009; 109 (02) 623-630
  • 102 Vandenberghe R, Van Laere K, Ivanoiu A et al. 18 F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010; 68 (03) 319-329
  • 103 Villemagne VL, McLean CA, Reardon K et al. 11C-PiB PET studies in typical sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2009; 80 (09) 998-1001
  • 104 Villemagne VL, Pike KE, Darby D et al. Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 2008; 46 (06) 1688-1697
  • 105 Villemagne VL, Mulligan RS, Pejoska S et al. Comparison of (11)C-PiB and (18)F-florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012;
  • 106 Villemagne VL, Pike KE, Chetelat G et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69 (01) 181-192
  • 107 Villemagne VL, Fodero-Tavoletti MT, Pike KE et al. The ART of loss: Abeta imaging in the evaluation of Alzheimer’s disease and other dementias. Mol Neurobiol 2008; 38 (01) 1-15
  • 108 Weisman D, Cho M, Taylor C et al. In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution. Neurology 2007; 69 (04) 356-359
  • 109 Wolk DA, Grachev ID, Buckley C et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol 2011; 68 (11) 1398-1403
  • 110 Zaccai J, McCracken C, Brayne C. A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 2005; 34 (06) 561-566
  • 111 Zhang S, Han D, Tan X et al. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 2012; 66 (02) 185-198