Klin Monbl Augenheilkd 2012; 229(8): 784-793
DOI: 10.1055/s-0032-1315207
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Aktueller Stand „light-adjustable lens“

Current State of the “Light-Adjustable Lens”
F. H. Hengerer
1   Augenheilkunde, Universitäts-Augenklinik, Bochum
› Author Affiliations
Further Information

Publication History

eingereicht 25 March 2012

akzeptiert 11 July 2012

Publication Date:
13 August 2012 (online)

Zusammenfassung

Die lichtadjustierbare Intraokularlinse ermöglicht eine postoperative nicht invasive Korrektur von Refraktionsfehlern. Nach der Implantation und abgeschlossener Wundheilung kann mit UV-Licht eine individuelle Feineinstellung der Linsenbrechwerte erfolgen unter Berücksichtigung der individuellen Bedürfnisse. Dabei sind Brechwertkorrekturen von bis zu 2 Dioptrien Sphäre und Zylinder in einem Arbeitsschritt adjustierbar. Das Verfahren erhielt im Dezember 2007 die CE-Zulassung. In dieser Übersichtsarbeit werden prospektive Studien zur klinischen Evaluation dieser neuartigen Intraokularlinsentechnologie im Hinblick auf die Effektivität, Sicherheit und Langzeitstabilität der refraktiven Ergebnisse dargestellt. Darüber hinaus erfolgt eine kritische Würdigung der Chancen und Grenzen der lichtadjustierbaren Intraokularlinse sowie ein Ausblick auf zukünftige Anwendungen. Die Effektivität des Verfahrens wurde zunächst an 40 Augen über einen Nachbeobachtungszeitraum von 4 Monaten überprüft. Die Sicherheit des Einsatzes von UV-Licht zur refraktiven Korrektur der Linse wurde hinsichtlich einer möglichen Änderung der Endothelzellzahl und Hornhautdicke über 12 Monate untersucht. Die refraktive Langzeitstabilität sowie der Einsatz bei biometrisch besonders kurzen und langen Augenlängen wurde in weiteren Studien bis zu 18 Monaten nachverfolgt. Anhand der erhobenen postoperativen Daten erfolgte eine Optimierung der Konstanten zur präoperativen Kalkulation der Linsenstärke. Damit war die Möglichkeit gegeben, näher die Zielrefraktion zu erreichen und Makromere für weitere neue Beleuchtungsprofile zu rekrutieren. Zukünftige Anwendungen beinhalten zusätzliche Beleuchtungsprofile zur Korrektur von Presbyopie sowie Erzeugung von Multifokalität oder einer individuellen asphärischen Oberflächengestaltung der Linse.

Abstract

The light-adjustable intraocular lens offers the possibility to correct postoperative residual refractive errors in a non-invasive way. After implantation and healing, a fine-tuning of the refractive power can be performed using ultraviolet light based on the individual requirements of each patient. Up to 2 diopters in sphere, as well as cylinder, can be adjusted in one step. This technology received CE market approval in 2007. This review article summarises published prospective studies on clinical evaluations of the effectiveness, safety and long-term refractive stability of this innovative technique. Moreover, a critical statement about limitations and perspectives will be given and future options will be discussed. For safety reasons, following application of the UV-light during refractive adjustments, examinations of endothelial cell count changes and measurements of corneal thickness have been monitored for 12 months following treatment. Further studies have been performed to evaluate the refractive stability over an 18-month period with a patient population that included average as well as biometrically short and long eyes. An analysis of postoperative refractive data led to optimised constants for preoperative IOL power calculation enabling the surgeon to further enhance visual outcomes with the IOL by using additional nomograms for customised correction of presbyopia, multifocality and increasing depth of focus with individual corrections of asphericity.

 
  • Literatur

  • 1 Brandser JR, Haaskjold E, Dorsum L. Accuracy of IOL calculation in cataract surgery. Acta Ophthalmol Scand 1997; 75: 162-165
  • 2 Lee AC, Qazi MA, Pepose JS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol 2008; 19: 13-17
  • 3 Pierro L, Modorati G, Brancato R. Clinical variability in keratometry, ultrasound biometry measurements, and emmetropic intraocular-lens power calculation. J Cataract Refract Surg 1991; 17: 91-94
  • 4 Preussner PR, Olsen T, Hoffmann P et al. Intraocular lens calculation accuracy in normal eyes. J Cataract Refract Surg 2008; 34: 802-8
  • 5 Preussner PR. Genauigkeitsgrenzen bei der IOL-Berechnung: Aktueller Stand. Klin Monatsbl Augenheilkd 2007; 224: 893-899
  • 6 Eleftheriadis H. IOL Master biometry: refractive results of 100 consecutive cases. Br J Ophthalmol 2003; 87: 960-963
  • 7 Prinz A, Neumayer T, Buehl W et al. Influence of severity of nuclear cataract on optical biometry. J Cataract Refract Surg 2006; 32: 1161-1165
  • 8 Kiss B, Findl O, Menapace R et al. Biometry of cataractous eyes using partial coherence interferometry. J Cataract Refract Surg 2002; 28: 224-229
  • 9 Hayashi K, Hayashi H. Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule. J Cataract Refract Surg 2005; 31: 337-342
  • 10 Tehrani M, Krummenauer F, Kumar R et al. Comparison of biometric measurements using partial coherence interferometry and applanation ultrasound. J Cataract Refract Surg 2003; 29: 747-752
  • 11 Verhulst E, Vryghem JC. Accuracy of intraocular lens power calculations using the Zeiss IOLMaster. A prospective study. Bull Soc Belge Ophthalmol 2001; 281: 61-65
  • 12 Haigis W. Intraocular lens calculation in extreme myopia. J Cataract Refract Surg 2009; 35: 906-911
  • 13 Savini G, Barboni P, Cardonelli M et al. Accuracy of Scheimpflug corneal power measurements for intraocular lens power calculation. J Cataract Refract Surg 2009; 35: 1193-1197
  • 14 Connors IR, Boseman IP, Olson RJ. Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg 2002; 28: 235-238
  • 15 Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs. conventional ultrasound biometry in intraocular lens power calculations. Eye 2002; 16: 552-556
  • 16 Freeman G, Pesudovs K. The impact of cataract severity on measurement acquisition with IOLMaster. Acta Ophthalmol Scand 2005; 83: 439-442
  • 17 Haigis W, Lege B, Miller N et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765-773
  • 18 MacLaren RE, Natkunarajah M, Riaz Y et al. Biometry and formula accuracy with intraocular lenses used for cataract surgery in extreme hyperopia. Am J Ophthalmol 2007; 143: 920-931
  • 19 Zaldivar R, Schultz MC, Davidorf JM et al. Intraocular lens power calculations in patients with extreme myopia. J Cataract Refract Surg 2000; 26: 668-674
  • 20 Haigis W. IOL-Kalkulation bei hohen Ametropien. Ophthalmologe 2008; 105: 999-1004
  • 21 European standard En ISO 11979-2, August 1999: Ophthalmic implants – intraocular lenses, Part 2: Optical properties and testing procedures ISO/FDIS11979-2-1999.
  • 22 Lteif Y, Gatinel D. Intraocular lens power calculation after keratorefractive surgery. J Fr Ophthalmol 2008; 31: 326-334
  • 23 Fam HB, Lim KL. A comparative analysis of intraocular lens power calculation methods after myopic excimer laser surgery. J Refract Surg 2008; 24: 355-360
  • 24 Holladay J. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology 1996; 103: 1118-1123
  • 25 Matthews MW, Eggleston HC, Hilmas GE. Development of a repeatedly adjustable intraocular lens. J Cataract Refract Surg 2003; 29: 2204-2210
  • 26 Matthews MW, Eggleston HC, Pekarek SD et al. Magnetically adjustable intraocular lens. J Cataract Refract Surg 2003; 29: 2211-2216
  • 27 Jahn CE, Strotman H. Investigation of the safety of an intraocular lens with reversibly adjustable optical power. Ophthalmologica 2005; 219: 362-365
  • 28 Jahn CE, Fromberg I, Fesser N et al. Further investigation of the tolerance and mechanical adjustability of the Acri.Tec AR-1 PC/IOL in rabbit eyes: an intraocular lens with reversibly adjustable optical power. Ophthalmic Res 2006; 38: 309-312
  • 29 Bille JF. Generation and in situ modification of customized IOLs. Papers presented at: The ASCRS Symposium on Cataract, IOL and Refractive Surgery. San Diego, California: ASCRS; 2011
  • 30 Schwartz DM. Light-adjustable lens. Trans Am Ophthalmol Soc 2003; 101: 417-436
  • 31 Olson R, Mamalis N, Hauge B. A light adjustable lens with injectable optics. Ophthalmol Clin North Am 2006; 19: 135-142
  • 32 Hengerer FH, Mellein AC, Buchner SE et al. The light-adjustable lens: Principles and clinical applications. Ophthalmologe 2009; 106: 260-264
  • 33 Chayet A, Sandstedt C, Chang S et al. Correction of myopia after cataract surgery with a light-adjustable lens. Ophthalmology 2009; 116: 1432-1435
  • 34 Chayet A, Sandstedt CA, Chang SH et al. Correction of residual hyperopia after cataract surgery using a light adjustable intraocular lens technology. Am J Ophthalmol 2009; 147: 392-397
  • 35 Hengerer FH, Conrad-Hengerer I, Hütz WW et al. Adjustment of sphero-cylindrical refractive errors in hyperopic eyes: 6-months results after cataract surgery and implantation of a light-adjustable intraocular lens. Klin Monatsbl Augenheilkd 2010; 227: 729-734
  • 36 Chayet A, Sandstedt C, Chang S et al. Use of the light-adjustable lens to correct astigmatism after cataract surgery. Br J Ophthalmol 2010; 94: 690-692
  • 37 Hengerer FH, Conrad-Hengerer I, Buchner SE et al. Evaluation of the Calhoun Vision UV light adjustable lens implanted following cataract removal. J Refract Surg 2010; 26: 716-721
  • 38 von Mohrenfels CW, Salgado J, Khoramnia R et al. Clinical results with the light adjustable intraocular lens after cataract surgery. J Refract Surg 2010; 26: 314-320
  • 39 Hengerer FH, Hütz WW, Dick HB et al. Combined correction of axial hyperopia and astigmatism using the light adjustable intraocular lens. Ophthalmology 2011; 118: 1236-1241
  • 40 Hengerer FH, Hütz WW, Dick HB et al. Combined correction of sphere and astigmatism using the light-adjustable intraocular lens in eyes with axial myopia. J Cataract Refract Surg 2011; 37: 317-323
  • 41 Hengerer FH, Dick HB, Conrad-Hengerer I. Clinical evaluation of an ultraviolet light adjustable intraocular lens implanted after cataract removal: eighteen months follow-up. Ophthalmology 2011; 118: 2382-2388
  • 42 Lichtinger A, Sandstedt CA, Schwartz DM et al. Correction of astigmatism after cataract surgery using the light adjustable lens: A 1-year follow-up pilot study. J Refract Surg 2011; 17: 1-4
  • 43 Hafezi F, Seiler T, Iseli HP. Light-adjustable lens complication. Ophthalmology 2010; 117: 848
  • 44 Hengerer FH, Dick HB, Buchwald S et al. Evaluation of corneal endothelial cell loss and corneal thickness after cataract removal with light-adjustable intraocular lens implantation: 12-month follow-up. J Cataract Refract Surg 2011; 37: 2095-2100
  • 45 Werner L, Chang W, Haymore J et al. Retinal safety of the irradiation delivered to light-adjustable intraocular lenses evaluated in a rabbit model. J Cataract Refract Surg 2010; 36: 1392-1397
  • 46 Werner L, Yeh O, Haymore J et al. Corneal endothelial safety with the irradiation system for light-adjustable intraocular lens. J Cataract Refract Surg 2007; 33: 873-878
  • 47 Buehl W, Stojanac D, Sacu S et al. Comparison of three methods of measuring corneal thickness and anterior chamber depth. Am J Ophthalmol 2006; 141: 7-12
  • 48 Ringvold A, Davanger M, Olsen EG. Changes of the cornea endothelium after ultraviolet radiation. Acta Ophthalmol 1982; 60: 41-53
  • 49 Podskochy A, Gan L, Fagerholm P. Apoptosis in UV-exposed rabbit corneas. Cornea 2000; 19: 99-103
  • 50 Mencucci R, Ponchietti C, Virgili G et al. Corneal endothelial damage after cataract surgery: Microincision versus standard technique. J Cataract Refract Surg 2006; 32: 1351-1354
  • 51 Bourne RRA, Minassian DC, Dart JKG et al. Effect of cataract surgery on the corneal endothelium; modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 2004; 111: 679-685
  • 52 Schultz RO, Glasser DB, Matsuda M et al. Response of the corneal endothelium to cataract surgery. Arch Ophthalmol 1986; 104: 1164-1169
  • 53 Storr-Paulsen A, Norregaard JC, Ahmed S et al. Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 2008; 34: 996-1000
  • 54 Salvi SM, Soong TK, Kumar BY et al. Central corneal thickness changes after phacoemulsification. J Cataract Refract Surg 2007; 33: 1426-1428
  • 55 Salgado JP, Khoramnia R, Schweiger B et al. Six-month clinical results with the light adjustable lens. Klin Monatsbl Augenheilkd 2010; 227: 966-970
  • 56 Güell JL, Morral M, Manero F et al. Calhoun light adjustable lens – presbyopia correction. Chapter 63. In: Chang D, Hrsg. Mastering refractive IOLs. The Art and Science. Slack Inc.; 2008: 232-235
  • 57 Sandstedt CA, Chang SH, Grubbs RH et al. Light adjustable lens: customizing correction for multifocality and higher-order aberrations. Trans Am Ophthalmol Soc 2006; 104: 29-39
  • 58 Chayet A, Badala F, Sandstedt C et al. Calhoun light adjustable lens – presbyopia correction. Chapter 62. In: Chang D, Hrsg. Mastering refractive IOLs. The Art and Science. Slack Inc.; 2008: 229-231