Subscribe to RSS
DOI: 10.1055/s-0032-1316544
The Evans–Tishchenko Reaction: Scope and Applications
Publication History
Received: 26 March 2012
Accepted after revision: 18 May 2012
Publication Date:
29 June 2012 (online)
Abstract
The Evans–Tishchenko reaction provides a highly diastereoselective route towards the synthesis of 1,3-anti diol monoesters, and therefore has found prominent use in a number of synthetic applications. This review summarises recent applications of the Evans–Tishchenko reaction in natural product synthesis, and examines scope in terms of substrate range, functional group tolerance, and catalyst.
1 Introduction
2 Reaction Mechanism and Catalyst Scope
2.1 Reaction Mechanism
2.2 Samarium
2.3 Scandium
2.4 Zirconium
2.5 Other Metals
3 Substrate Scope
4 Application in Natural Product Synthesis
4.1 Protection/Asymmetric Induction
4.2 Functional Group Interconversion
4.3 Fragment Linkage and Ring Formation
5 Future Perspectives
6 Conclusion
-
References
- 1a Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 355
- 1b Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 482
- 1c Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 540
- 1d Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 547
- 2 Evans DA, Hoveyda AH. J. Am. Chem. Soc. 1990; 112: 6447
- 3a Törmäkangas OP, Koskinen AM. P In Recent Research Developments in Organic Chemistry . Vol. 5. Pandalai SG. Transworld Research Network; Trivandrum: 2001: 225
- 3b Seki T, Nakajo T, Onaka M. Chem. Lett. 2006; 35: 824
- 4 The following review provides good coverage of the aldol–Tishchenko reaction: Mahrwald R. Curr. Org. Chem. 2003; 7: 1713
- 5 Ichibakase T, Nakatsu M, Nakajima M. Molecules 2011; 16: 5008
- 6 An explanatory example of transesterification process in the related aldol–Tishchenko reaction can be found here: Reutrakul V, Jaratjaroonphong J, Tuchinda P, Kuhakarn C, Kongsaeree P, Prabpai S, Pohmakotr M. Tetrahedron Lett. 2006; 47: 4753
- 7a Schneider C, Klapa K, Hansch M. Synlett 2005; 91
- 7b Schneider C, Hansch M, Weide T. Chem.–Eur. J. 2005; 11: 3010
- 7c Raghavan S, Samanta PK. Org. Lett. 2012; 14: 2346
- 8 Dorgan PD, Durrani J, Cases-Thomas MJ, Hulme AN. J. Org. Chem. 2010; 75: 7475
- 9a Organic Synthesis Using Samarium Diiodide: A Practical Guide . Procter DJ, Flowers RA, Skrydstrup T. The Royal Society of Chemistry; Cambridge: 2010
- 9b Szostak M, Spain M, Proctor DJ. J. Org. Chem. 2012; 77: 3049
- 10 Imamoto T, Ono M. Chem. Lett. 1987; 501
- 11 Teprovic JA. Jr, Sudhadevi Antharjanam PK, Prasad E, Pesciotta EN, Flowers RA. Eur. J. Inorg. Chem. 2008; 5015
- 12 Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3020
- 13a Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
- 13b Kagan HB. Tetrahedron 2003; 59: 10351
- 13c Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
- 14 Molander GA, Kenny C. J. Org. Chem. 1991; 56: 1439
- 15 Concellón JM, Rodríguez-Solla H, Bardales E, Huerta M. Eur. J. Org. Chem. 2003; 1775
- 16 Girard P, Namy JL, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
- 17 Akane N, Kanagawa Y, Nishiyama Y, Ishii Y. Chem. Lett. 1992; 2431
- 18 For a review of the use of Sc(OTf)3 in organic synthesis see: Kobayashi S. Eur. J. Org. Chem. 1999; 15
- 19 Gillespie KM, Munslow IJ, Scott P. Tetrahedron Lett. 1999; 40: 9371
- 20 Umekawa Y, Sakaguchi S, Nishiyama Y, Ishii Y. J. Org. Chem. 1997; 62: 3409
- 21 Mascarenhas CM, Miller SP, White PS, Morken JP. Angew. Chem. Int. Ed. 2001; 40: 601
- 22 Feutrill JT, Lilly MJ, Rizzacasa MA. Org. Lett. 2000; 2: 3365
- 23 Smith AB, Lee D, Adams CM, Kozlowski MC. Org. Lett. 2002; 4: 4539
- 24a Langille NF, Dakin LA, Panek JS. Org. Lett. 2003; 5: 575
- 24b Hydrogen peroxide: Ganguly NC, Barik SK. Synthesis 2009; 1393
- 24c See also: Ganguly NC, Mondal P. Synth. Commun. 2011; 41: 2374
- 24d IBX: Krishnaveni NS, Surendra K, Nageswar YV. D, Rao KR. Synthesis 2003; 2295
- 24e See also: Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
- 25 Blakemore PR, Browder CC, Hong J, Lincoln CM, Nagornyy PA, Robarge LA, Wardrop DJ, White JD. J. Org. Chem. 2005; 70: 5449
- 26 Hulme AN, Howells GE. Tetrahedron Lett. 1997; 38: 8245
- 27 Schöning K.-U, Hayashi RK, Powell DR, Kirschning A. Tetrahedron: Asymmetry 1999; 10: 817
- 28a Kartika R, Gruffi TR, Taylor RE. Org. Lett. 2008; 10: 5047
- 28b Kim H, Park Y, Hong J. Angew. Chem. Int. Ed. 2009; 48: 7577
- 28c Custar DW, Zabawa TP, Hines J, Crews CM, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 12406
- 29 Jiang Y, Hong J, Burke SD. Org. Lett. 2004; 6: 1445
- 30a Skene WG, Scaiano JC, Cozens FL. J. Org. Chem. 1996; 61: 7918
- 30b Ogawa A, Sumino Y, Nanke T, Ohya S, Sonoda N, Hirao T. J. Am. Chem. Soc. 1997; 119: 2745
- 30c Ogawa A, Ohya S, Hirao T. Chem. Lett. 1997; 275
- 30d Ogawa A, Ohya S, Doi M, Sumino Y, Sonoda N, Hirao T. Tetrahedron Lett. 1998; 39: 6341
- 30e Molander GA, Wolfe CN. J. Org. Chem. 1998; 63: 9031
- 30f Sumino Y, Harato N, Tomisaka Y, Ogawa A. Tetrahedron 2003; 59: 10499
- 30g Concellón JM, Rodríguez-Solla H, Simal C, Huerta M. Org. Lett. 2005; 7: 5833
- 31a Kende AS, Mendoza JS. Tetrahedron Lett. 1991; 32: 1699
- 31b Banik BK, Mukhopadhyay C, Venkatraman MS, Becker FF. Tetrahedron Lett. 1998; 39: 7243
- 31c Chen XY, Zhong WH, Zhang YM. Chin. Chem. Lett. 2000; 11: 387
- 31d Zhong W, Zhang Y, Chen X. J. Chem. Res., Synop. 2000; 532
- 31e Brady ED, Clark DL, Keogh DW, Scott BL, Watkin JG. J. Am. Chem. Soc. 2002; 124: 7007
- 31f Jia Y, Li Q, Wang X, Wang H, Liu X. J. Shanghai Univ. (Engl. Ed.) 2006; 10: 277
- 32 Arefolov A, Panek JS. J. Am. Chem. Soc. 2005; 127: 5596
- 33a Schelhaas M, Waldmann H. Angew. Chem., Int. Ed. Engl. 1996; 35: 2056
- 33b Baran PS, Maimone TJ, Richter JM. Nature (London) 2007; 446: 404
- 33c Young IS, Baran PS. Nat. Chem. 2009; 1: 193
- 34 Paterson I, Paquet T, Dalby SM. Org. Lett. 2011; 13: 4398
- 35a Paterson I, Coster MJ. Tetrahedron Lett. 2002; 43: 3285
- 35b Paterson I, Coster MJ, Chen DY.-K, Gibson KR, Wallace DJ. Org. Biomol. Chem. 2005; 3: 2410
- 36a Paterson I, Coster MJ, Chen DY.-K, Oballa RM, Wallace DJ, Norcross RD. Org. Biomol. Chem. 2005; 3: 2399
- 36b Paterson I, Coster MJ, Chen DY.-K, Aceña JL, Bach J, Keown LE, Trieselmann T. Org. Biomol. Chem. 2005; 3: 2420
- 36c Paterson I, Chen DY.-K, Coster MJ, Aceña JL, Bach J, Wallace DJ. Org. Biomol. Chem. 2005; 3: 2431
- 37a Smith AB, Adams CM, Lodise Barbosa SA, Degnan AP. J. Am. Chem. Soc. 2003; 125: 350
- 37b Smith AB, Adams CM, Lodise Barbosa SA, Degnan AP. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12042
- 38 Paterson I, Chen DY.-K, Aceña JL, Franklin AS. Org. Lett. 2000; 2: 1513
- 39a Simon C, Hosztafi S, Makleit S. J. Heterocycl. Chem. 1997; 34: 349
- 39b But TY. S, Toy PH. Chem.–Asian J. 2007; 2: 1340
- 40 Cohen F, Overman LE. J. Am. Chem. Soc. 2006; 128: 2604
- 41 Romo D, Meyer SD, Johnson DD, Schreiber SL. J. Am. Chem. Soc. 1993; 115: 7906
- 42a Nicolaou KC. Tetrahedron 1977; 33: 683
- 42b Laduwahetty T. Contemp. Org. Synth. 1995; 2: 133
- 42c Parenty A, Moreau X, Campagne J. Chem. Rev. 2006; 106: 911
- 42d Shiina I. Chem. Rev. 2007; 107: 239
- 42e Ferraz HM. C, Bombonato FI, Sano MK, Longo LS. Jr. Quim. Nova 2008; 31: 885
- 43 Aird JI, Hulme AN, White JW. Org. Lett. 2007; 9: 631
- 44 Fürstner A, Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
- 45 Paterson I, Luckhurst CA. Tetrahedron Lett. 2003; 44: 3749
- 46a Forsyth CJ, Ahmed F, Cink RD, Lee CS. J. Am. Chem. Soc. 1998; 120: 5597
- 46b Smith AB, Minbiole KP, Verhoest PR, Schelhaas M. J. Am. Chem. Soc. 2001; 123: 10942
- 46c Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. Angew. Chem. Int. Ed. 2003; 42: 1258
- 47a Bodnar PM, Shaw JT, Woerpel KA. J. Org. Chem. 1997; 62: 5674
- 47b Ichibakase T, Nakajima M. Org. Lett. 2011; 13: 1579
- 48a Horiuchi Y, Gnanadesikan V, Oshima T, Masu H, Katagiri K, Sei Y, Yamaguchi K, Shibasaki M. Chem.–Eur. J. 2005; 11: 5195
- 49a Mahrwald R, Costisella B. Synthesis 1996; 1087
- 49b Rohr K, Herre R, Mahrwald R. Org. Lett. 2005; 7: 4499
- 50 Mlynarski J, Rakiel B, Stodulski M, Suszczyńska A, Frelek J. Chem.–Eur. J. 2006; 12: 8158
- 51 Dzik WI, Gooßen LJ. Angew. Chem. Int. Ed. 2011; 50: 11047
- 52a Aristoff PA, Harrison AW, Huber AM. Tetrahedron Lett. 1984; 25: 3955
- 52b Ahn C, DeShong P. J. Org. Chem. 2002; 67: 1754
- 52c Hodgetts KJ. Tetrahedron 2005; 61: 6860
- 52d Mishra JK, Panda G. J. Comb. Chem. 2007; 9: 321
- 53 Kochi T, Tang TP, Ellman JA. J. Am. Chem. Soc. 2003; 125: 11276
The following reviews discuss the Tishchenko reaction in the synthesis of esters:
The following reviews cover a number of alternative uses of SmI2 in organic synthesis:
The thioacetal moiety is sensitive to a number of common oxidizing agents, for example Dess–Martin periodinane:
The photoinduced reduction of organic compounds mediated by SmI2 is an area of research that has undergone considerable investigation:
See, for example:
The following papers examine protecting group strategies, and highlight some of their associated problems:
Routes to the AB and EF subunits and their linkage to complete the natural product have also since been published. AB subunit:
EF subunit:
For reviews of the Mitsunobu reaction, see:
The following reviews discuss medium- and large-ring construction in natural product synthesis, including macrolactonisation and other ring-closing methods:
The total synthesis of phorboxazole A has otherwise been completed by a number of research groups, for example:
For example, see: