Synthesis 2012; 44(16): 2587-2594
DOI: 10.1055/s-0032-1316590
paper
© Georg Thieme Verlag Stuttgart · New York

Polonovski-Type N-Demethylation of N-Methyl Alkaloids Using Substituted Ferrocene Redox Catalysts

Gaik B. Kok
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia, Fax: +61(3)99039582   Email: peter.scammells@monash.edu
,
Peter J. Scammells*
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia, Fax: +61(3)99039582   Email: peter.scammells@monash.edu
› Author Affiliations
Further Information

Publication History

Received: 21 March 2012

Accepted after revision: 06 June 2012

Publication Date:
23 July 2012 (online)


Abstract

Various substituted ferrocenes have been trialed as catalysts in the nonclassical Polonovski reaction for N-demethylation of N-methyl alkaloids. Earlier studies suggest that conditions facilitating a higher ferrocenium ion concentration lead to superior outcomes. In this regard, the bifunctional ferrocene FcCH2CO2H, with electron donor and acceptor moieties in the same molecule, has been shown to be advantageous for use as a catalyst in the N-demethylation of a number of tertiary N-methylamines such as codeine, thebaine, and oripavine. These substrates are readily N-demethylated under mild conditions, employing sub-stoichiometric amounts of the substituted ferrocene at ambient temperature. These reactions are equally efficient in air and may also be carried out in one pot.

Supporting Information

 
  • References

  • 1 Fries DS. Opioid Analgesics. In Foye’s Principles of Medicinal Chemistry. Lemke TL. Lippincott William and Wilkins; Philadelphia: 2002. 5th ed., 453-479
  • 2 http://www.drugs.com/top200.html.
  • 3 McCamley K, Ripper JA, Singer RD, Scammells PJ. J. Org. Chem. 2003; 68: 9847
  • 4 Thavaneswaran S, Scammells PJ. Bioorg. Med. Chem. Lett. 2006; 16: 2868
    • 5a Dong Z, Scammells PJ. J. Org. Chem. 2007; 72: 9881
    • 5b Kok G, Ashton TD, Scammells PJ. Adv. Synth. Catal. 2009; 351: 283
  • 6 Kok GB, Pye CC, Singer RD, Scammells PJ. J. Org. Chem. 2010; 75: 4806
  • 7 Kok GB, Scammells PJ. Org. Biomol. Chem. 2011; 9: 1008
  • 8 Kok GB, Scammells PJ. Aust. J. Chem. 2011; 64: 1515
  • 9 Kok GB, Scammells PJ. Bioorg. Med. Chem. Lett. 2010; 20: 4499
  • 10 Grierson D. Org. React. 1990; 39: 85
    • 11a Brand JC. D, Snedden W. Trans. Faraday Soc. 1957; 53: 894
    • 11b Peña LA, Seidl AJ, Cohen LR, Hoggard PE. Transition Met. Chem. 2009; 34: 135 , and references cited therein
  • 12 Traverso O, Scandola F. Inorg. Chim. Acta 1970; 4: 493

    • See, for example:
    • 13a Wilkinson G, Cotton FA. Prog. Inorg. Chem. 1959; 1: 1
    • 13b Zara AJ, Machado SS, Bulhóes LO. S. J. Electroanal. Chem. 1987; 221: 165 ; and references cited therein
    • 13c Prins R, Reinders FJ. J. Am. Chem. Soc. 1969; 91: 4929
    • 13d Wilkinson G. J. Am. Chem. Soc. 1952; 74: 6146
  • 14 Sato M, Yamada T, Nishimura A. Chem. Lett. 1980; 925
  • 15 Hurvois JP, Moinet C. J. Organomet. Chem. 2005; 690: 1829
  • 16 Lorans J, Pierre F, Toupet L, Moinet C. Chem. Commun. 1997; 1279
  • 17 Zotti G, Schiavon G, Zecchin S, Favretto D. J. Electroanal. Chem. 1998; 156: 217
  • 18 Fehlhammer WP, Moinet C. J. Electroanal. Chem. 1983; 158: 187

    • See, for example:
    • 19a Gorton JE, Lentzner HL, Watta WE. Tetrahedron 1971; 27: 4353
    • 19b Rapic V, Tabakovic I, Skundric B, Lacan M. Croat. Chem. Acta 1978; 51: 333
    • 19c Nagy AG, Toma S. J. Organomet. Chem. 1984; 266: 257
    • 19d Stahl K, Boche G, Massa W. J. Organomet. Chem. 1984; 277: 113
    • 19e Britton WE, Kashyap R, El-Hashash M, El-Kady M, Herberhhold M. Organometallics 1986; 5: 1029
    • 19f Fujjta E, Gordon B, Hillman M, Nagy H. J. Organomet. Chem. 1981; 218: 105
    • 19g Hillman M, Gordon B, Weiss AJ, Guzikowska AP. J. Organomet. Chem. 1978; 155: 77
    • 19h El-Hashash MA, El-Najdy S, Saleh R. Indian J. Chem., Sect. A: Inorg., Phys., Theor. Anal. Chem. 1983; 22: 605
    • 19i Silva ME. N. P. R. A, Pombeiro AJ. L, da Silva JJ. R. F, Herrmann R, Deus N, Castilho TJ, Silva MF. C. G. J. Organomet. Chem. 1991; 421: 75
    • 19j Silva ME. N. P. R. A, Pombeiro AJ. L, da Silva JJ. R. F, Herrmann R, Deus N, Bozak RE. J. Organomet. Chem. 1994; 480: 81
    • 19k Asahara M, Natsume S, Kurihara H, Yamaguchi T, Erabi T, Wada M. J. Organomet. Chem. 2000; 601: 246
    • 20a Bashkin JK, Kinlen PJ. Inorg. Chem. 1990; 29: 4507
    • 20b Zhong Z.-H, Matsumura-Inoue T, Ichimura A. Anal. Sci. 1992; 8: 877
    • 20c Blom NF, Neuse EW. Transition Met. Chem. 1987; 12: 301
  • 21 Castagnola M, Floris B, Illuminati G, Ortaggi G. J. Organomet. Chem. 1973; 60: C17
  • 22 Fomin VM, Klimova MN, Smirnov AS. Russ. J. Coord. Chem. 2004; 30: 332
  • 23 De Santis G, Fabbrizzi L, Licchelli M, Pallavicini P. Inorg. Chim. Acta 1994; 225: 239
  • 24 Formin VM, Shirokov AE. Russ. J. Gen. Chem. 2011; 81: 81
  • 25 Fomin VM, Pukhova IV, Smirnov AS. Russ. J. Gen. Chem. 2003; 10: 1661
  • 26 Perevalova EG, Ustynyuk YA, Nesmeyanov AN. Izv. Akad SSSR, Ser. Khim. 1963; 1967
  • 27 Formin VM, Shirokov AE. Russ. J. Gen. Chem. 2009; 79: 2304
    • 28a Bitterwolf TE, Ling AC. J. Organomet. Chem. 1972; 40: C29
    • 28b Lubach J, Drenth W. Recl. Trav. Chim. Pays-Bas 1973; 92: 586
  • 29 Fomin VM, Shirokov NG, Polyakova NG, Smirnov PA. Russ. J. Gen. Chem. 2007; 77: 652
  • 30 Prins R, Korswagen AR, Kortbeek AG. T. G. J. Organomet. Chem. 1972; 39: 335
  • 31 Chaudhary V, Leisch H, Moudra A, Allen B, De Luca V, Cox DP, Hudlicky T. Collect. Czech. Chem. Commun. 2009; 74: 1179
  • 32 Bartels-Keith JR. J. Chem. Soc. C 1966; 617
  • 33 Madyastha KM, Reddy GV. B, Sridhar GR. Ind. J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2000; 39: 377
  • 34 Madyastha KM, Reddy GV. B. J. Chem. Soc., Perkin Trans. 1 1994; 911