Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(1): 127-133
DOI: 10.1055/s-0032-1316823
DOI: 10.1055/s-0032-1316823
paper
Regioselective Aromatic Nucleophilic Substitution in N-Aryl-2-nitrosoanilines with Oxygen and Nitrogen Nucleophiles
Further Information
Publication History
Received: 16 October 2012
Accepted after revision: 10 November 2012
Publication Date:
29 November 2012 (online)
Abstract
Aromatic nucleophilic substitution of halogens in N-aryl-2-nitrosoanilines with ammonia, alkylamines and alkoxide ions proceeds efficiently and highly regioselectively in the position para to the nitroso group. When two halogen atoms ortho and para are present, the latter is substituted exclusively. Oxidative substitution of hydrogen at the unsubstituted ortho position of the nitrosoaniline ring does not compete with substitution of para halogen atoms. The reaction allows the synthesis of N-aryl-2-nitrosoanilines which cannot be obtained according to known methods.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Bunnet JF, Zahler RE. Chem. Rev. 1951; 49: 273
- 1b Miller J. Aromatic Nucleophilic Substitution . Elsevier; Amsterdam: 1968
- 1c Terrier F. Nucleophilic Aromatic Displacement: The Influence of the Nitro Group. J. Wiley & Sons; New York: 1991
- 2a Crampton MR, Emokpae TA, Isanbor C. Eur. J. Org. Chem. 2007; 1378
- 2b Crampton MR, Emokpae TA, Isanbor C. J. Phys. Org. Chem. 2006; 19: 75
- 2c Mancini PM, Fortunato GG, Vottero LR. J. Phys. Org. Chem. 2004; 17: 138
- 3a Chupakhin ON, Charushin VN, van der Plas HC. Nucleophilic Aromatic Substitution of Hydrogen . Academic Press; San Diego: 1994
- 3b van der Plas HC. Adv. Heterocycl. Chem. 2004; 86: 1
- 3c Gulevskaya AV, Pozharskii AF. Adv. Heterocycl. Chem. 2007; 93: 57
- 3d Charushin VN, Chupakhin ON. Mendeleev Commun. 2007; 17: 249
- 4a Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 4b Mąkosza M. Synthesis 2011; 2341
- 4c Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 6 Kwast A, Stachowska K, Trawczyński A, Wróbel Z. Tetrahedron Lett. 2011; 52: 6484
- 7 Wróbel Z, Stachowska K, Grudzień K, Kwast A. Synlett 2011; 1439
- 8 Gościk A, Królikiewicz M, Kwast A, Pawłowski R, Stachowska K, Turska I, Wróbel Z. Helv. Chim. Acta 2012; in press, DOI:
- 9 Wirth S, Wallek AU, Zernickel A, Feil F, Sztiller-Sikorska M, Lesiak-Mieczkowska K, Bräuchle Ch, Lorenz I.-P, Czyż M. J. Inorg. Biochem. 2010; 104: 774
- 10 Lipilin DL, Churakov AM, Ioffe SL, Strelenko YA, Tartakovsky VA. Eur. J. Org. Chem. 1999; 29
- 11a Bolton R, Sandall PB. J. Chem. Soc., Perkin Trans. 2 1978; 1288
- 11b Burdon J, Thomas DF. Tetrahedron 1965; 21: 2389
- 12a Gornostaev LM, Bocharova EA, Geets NV. Russ. J. Org. Chem. 2006; 42: 1289
- 12b Bocharova EA, Gornostaev LM, Gritsan NP, Gurova TN. Russ. J. Org. Chem. 2010; 46: 1639
- 12c Gornostaev LM, Bocharova EA, Dolgushina LV, Bagryanskaya IYu, Gatilov YuV. Russ. J. Org. Chem. 2010; 46: 693
- 13 Zumman P, Shah B. Chem. Rev. 1994; 94: 1621
- 14 Mąkosza M, Ludwiczak S. J. Org. Chem. 1984; 49: 4562
- 15 Mąkosza M, Voskresensky S, Białecki M, Kwast A. Pol. J. Chem. 1999; 73: 1969
- 16 Mąkosza M, Kwast E. Tetrahedron 1995; 51: 8339
- 17 Due to low solubility of 2i in other deuterated solvents, the spectra were recorded in DMSO-d 6. While a complex mixture of isomeric forms was observed in this solvent at room temperature, acceptable spectra could be obtained at 80 °C, although two 13C signals were not visible.