Synthesis 2013; 45(3): 406-412
DOI: 10.1055/s-0032-1316837
paper
© Georg Thieme Verlag Stuttgart · New York

Regio- and Diastereoselective Synthesis of trans-2,3-Dihydrofuran Derivatives in an Aqueous Medium

Abu T. Khan*
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India   Fax: +91(361)2582349   Email: atk@iitg.ernet.in
,
Mohan Lal
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India   Fax: +91(361)2582349   Email: atk@iitg.ernet.in
,
R. Sidick Basha
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India   Fax: +91(361)2582349   Email: atk@iitg.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 07 October 2012

Accepted after revision: 05 December 2012

Publication Date:
04 January 2013 (online)


This work is dedicated to Professor K. C. Majumdar, Department of Chemistry, Kalyani University, West Bengal, India on the occasion of his 68th birthday.

Abstract

A wide variety of fused trans-2,3-dihydrofuran derivatives were synthesized through a one-pot three-component reaction of an aromatic aldehyde, a cyclic β-diketo compound, and an in situ-generated pyridinium ylide in refluxing. The pyridinium ylide was formed from either 2-bromo-1-phenylethanone or 4-nitrobenzyl bromide and pyridine in the presence of 10 mol% of sodium hydroxide. Pyridine plays crucial role in forming the pyridinium salt, which, in turn, forms a nitrogen ylide in the presence of sodium hydroxide. The ylide assists a Michael-initiated ring-closure reaction, but is not itself incorporated in the final product. The protocol is environmentally acceptable because no organic solvent is involved at any stage. Furthermore, the method is highly diastereoselective, gives good yields, and does not involve extensive workup procedures or chromatographic separations, as the desired products can be isolated by filtration and drying.

Supporting Information

Primary Data

 
  • References

  • 1 Li C.-J, Chan T.-H. Organic Reactions in Aqueous Media . Wiley; New York: 1997
  • 2 Jiménez-González C, Constable DJ. C. Green Chemistry and Engineering: A Practical Design Approach . Wiley; Hoboken: 2011
  • 3 Ranu BC, Banerjee S. Tetrahedron Lett. 2007; 48; 141
  • 4 Li C.-J. Chem. Rev. 2005; 105; 3095
    • 5a Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 5b Synthesis of Heterocycles via Multicomponent Reactions. Vol. 1 and 2. Maes BU. W, Orru RV. A, Ruijter E. Springer; New York: 2010: 1
    • 6a Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259
    • 6b Wender PA, Handy SL, Wright DL. Chem. Ind. (London) 1997; 765
    • 7a McKay CS, Kennedy DC, Pezacki JP. Tetrahedron Lett. 2009; 50: 1893
    • 7b Kumar A, Gupta MK, Kumar M. Tetrahedron Lett. 2011; 52: 4521
    • 8a Dean FM. Naturally Occurring Oxygen Ring Compounds . Butterworths; London: 1963
    • 8b Murray RD. H, Mendez J, Brown SA. The Natural Coumarins: Occurrence, Chemistry, and Biochemistry . Wiley; New York: 1982: 13
    • 8c Kobayashi K, Shimizu H, Sasaki A, Suginome H. J. Org. Chem. 1992; 57: 1170
    • 8d Pôças ES. C, Lopes DV. S, da Silva AJ. M, Pimenta PH. C, Leitão FB, Netto CD, Buarque CD, Brito FV, Costa PR. R, Noël F. Bioorg. Med. Chem. 2006; 14: 7962
  • 9 Majumdar KC, Chattopadhyay SK. Heterocycles in Natural Product Synthesis . Wiley-VCH; Weinheim: 2011: 99
  • 10 Oketch-Rabah HA, Lemmich E, Dossaji SF, Theander TG, Olsen CE, Cornett C, Kharazmi A, Christensen SB. J. Nat. Prod. 1997; 60: 458
    • 11a Feuer G. Prog. Med. Chem. 1974; 10: 85
    • 11b Deana AA, Stokker GE, Schultz EM, Smith RL, Cragoe Jr EJ, Russo HF, Watson LS. J. Med. Chem. 1983; 26: 580
    • 11c Mulholland DA, Iourine SE, Taylor DA. H, Dean EM. Phytochemistry 1998; 47: 1641
  • 12 Coy ED, Cuca LE, Sefkow M. Bioorg. Med. Chem. Lett. 2009; 19: 6922
  • 13 Wang Q.-F, Song X.-K, Chen J, Yan C.-G. J. Comb. Chem. 2009; 11: 1007; and references cited therein
    • 14a Liu C.-R, Zhu B.-H, Zheng J.-C, Sun X.-L, Xie Z, Tang Y. Chem. Commun. (Cambridge) 2011; 47: 1342
    • 14b Lin X, Mao Z, Dai X, Lu P, Wang Y. Chem. Commun. (Cambridge) 2011; 47: 6620
    • 15a Wang Q.-F, Hou H, Hui L, Yan C.-G. J. Org. Chem. 2009; 74: 7403
    • 15b Altieri E, Cordaro M, Grassi G, Risitano F, Scala A. Tetrahedron 2010; 66: 9493
    • 15c Han Y, Hou H, Yao R, Fu Q, Yan C.-G. Synthesis 2010; 4061
    • 15d Chuang C.-P, Chen K.-P. Tetrahedron 2012; 68: 1401
  • 16 Jiang Y, Ma D. Tetrahedron: Asymmetry 2002; 13: 1033
  • 17 Cao W, Ding W, Chen J, Chen Y, Zang Q, Chen G. Synth. Commun. 2004; 34: 1599
    • 18a Yang Z, Fan M, Mu R, Liu W, Liang Y. Tetrahedron 2005; 61: 9140
    • 18b Wang G.-W, Dong Y.-W, Wu P, Yuan T.-T, Shen Y.-B. J. Org. Chem. 2008; 73: 7088
    • 18c Ye Y, Wang L, Fan R. J. Org. Chem. 2010; 75: 1760
    • 19a Khan AT, Lal M, Khan MM. Tetrahedron Lett. 2010; 51: 4419
    • 19b Khan AT, Das DK, Khan MM. Tetrahedron Lett. 2011; 52: 4539
    • 19c Khan AT, Lal M, Ali S, Khan MM. Tetrahedron Lett. 2011; 52: 5327
    • 19d Khan AT, Basha RS, Lal M. Tetrahedron Lett. 2012; 53: 2211
    • 19e Khan AT, Das DK. Tetrahedron Lett. 2012; 53: 2345
  • 20 Evans PA, Clizbe EA. J. Am. Chem. Soc. 2009; 131: 8722
    • 21a Garzino F, Méou A, Brun P. Tetrahedron Lett. 2000; 41: 9803
    • 21b Garzino F, Méou A, Brun P. Eur. J. Org. Chem. 2003; 1410
    • 21c Pohmakotr M, Issaree A, Sampaongoen L, Tuchinda P, Reutrakul V. Tetrahedron Lett. 2003; 44: 7937
    • 21d Yang Z, Fan M, Mu R, Liu W, Liang Y. Tetrahedron 2005; 61: 9140
    • 21e Martinet S, Méou A, Brun P. Magn. Reson. Chem. 2007; 45: 182
  • 22 Crystallographic data for compound 6e have been deposited with the accession number CCDC 838374, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html