Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(5): 683-693
DOI: 10.1055/s-0032-1316849
DOI: 10.1055/s-0032-1316849
paper
Iodoacetic Acid is an Efficient Reagent for the Synthesis of Amino Acid Derived 2-Aminobenzimidazoles
Further Information
Publication History
Received: 29 November 2012
Accepted after revision: 07 January 2013
Publication Date:
06 February 2013 (online)
Abstract
Chiral, nonracemic, N-unprotected amino acids were converted into the corresponding N-benzimidazol-2-yl derivatives by a sequential procedure involving initial formation of isothiocyanates, their reaction with arene-1,2-diamines, and cyclization–desulfurization of the intermediate thioureas with iodoacetic acid. The simplified workup and the lack of volatile or toxic byproducts in the key desulfurization step renders iodoacetic acid a superior reagent to the usual reagent, iodomethane.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Alamgir M, Black DSt. C, Kumar N. Top. Heterocycl. Chem 2007; 9: 87
- 1b Boiani M, Gonzalez M. Mini-Rev. Med. Chem. 2005; 5: 409
- 1c Wang J, Hou T. J. Chem. Inf. Model. 2010; 50: 55
- 2 Grant FS, Konradi AW, Pleiss MA, Thorsett ED. US 6,545,003, 2003
- 3 Wythes MJ, Palmer MJ, Kemp MI, Mackenny MC, Maguire RJ, Blake JF. WO 0005231, 2000
- 4 Keenan RM, Miller WH. WO 9412478 1994
- 5 Poitout L, Brault V, Sackur V, Pierre CR, Pascale P. US 20090270372, 2009
- 6 Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 7a Sun A, Ndungu JM, Krumm SA, Yoon J.-J, Thepchatri P, Natchus M, Plemper RK, Snyder JP. ACS Med. Chem. Lett. 2011; 2: 798
- 7b Peddibhotla S, Shi R, Khan P, Smith LH, Mangravita-Novo A, Vicchiarelli M, Su Y, Okolotowicz KJ, Cashman JR, Reed JC, Roth GP. J. Med. Chem. 2010; 53: 4793
- 7c Almasi D, Alonso DA, Gómez-Bengoa E, Nájera C. J. Org. Chem. 2009; 74: 6163
- 7d Lahue BR, Ma Y, Shipps GW, Seghezzi W, Herbst R. Bioorg. Med. Chem. Lett. 2009; 19: 3405
- 7e Moriya M, Kishino H, Sakuraba S, Sakamoto T, Suga T, Takahashi H, Suzuki T, Ito M, Ito J, Moriya R, Takenaga N, Iwaasa H, Ishihara A, Kanatani A, Fukami T. Bioorg. Med. Chem. Lett. 2009; 19: 3568
- 7f Bonfanti J-F, Meyer C, Doublet F, Fortin J, Muller P, Queguiner L, Gevers T, Janssens P, Szel H, Willebrords R, Timmerman P, Wuyts K, van Remoortere P, Janssens F, Wigerinck P, Andries K. J. Med. Chem. 2008; 51: 875
- 7g Arienzo R, Cramp S, Dyke HJ, Lockey PM, Norman D, Roach AG, Smith P, Wong M, Wren SP. Bioorg. Med. Chem. Lett. 2007; 17: 1403
- 7h Martin RE, Green LG, Guba W, Kratochwil N, Christ A. J. Med. Chem. 2007; 50: 6291
- 7i Ognyanov VI, Balan C, Bannon AW, Bo Y, Dominguez C, Fotsch C, Gore VK, Klionsky L, Ma VV, Qian Y.-X, Tamir R, Wang X, Xi N, Xu S, Zhu D, Gavva NR, Treanor JJ. S, Norman MH. J. Med. Chem. 2006; 49: 3719
- 7j Lan P, Romero FA, Malcolm TS, Stevens BD, Wodka D, Makara GM. Tetrahedron Lett. 2008; 49: 1910
- 8a Wang Q, Schreiber SL. Org. Lett. 2009; 11: 5178
- 8b Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
- 9a Hong Y, Tanoury GJ, Wilkinson HS, Bakale RP, Wald SA, Senanayake CH. Tetrahedron Lett. 1997; 38: 5607
- 9b Hong YP, Senanayake CH, Xiang TJ, Vandenbossche CP, Tanoury GJ, Bakale RP, Wald SA. Tetrahedron Lett. 1998; 39: 3121
- 9c Hooper MW, Utsunomiya M, Hartwig JF. J. Org. Chem. 2003; 68: 2861
- 9d Wang X, Bhatia PA, Daanen JF, Latsaw SP, Rohde J, Kolasa T, Hakeem AA, Matulenko MA, Nakane M, Uchic ME, Miller LN, Chang R, Moreland RB, Brioni JD, Steward AO. Bioorg. Med. Chem. 2005; 13: 4667
- 10a Evindar G, Batey RA. Org. Lett. 2003; 5: 133
- 10b Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
- 10c Deng X, McAllister H, Mani NS. J. Org. Chem. 2009; 74: 5742
- 10d Lv X, Bao W. J. Org. Chem. 2009; 74: 5618
- 11a Barber M, Jones JH, Witty MJ. J. Chem. Soc., Perkin Trans. 1 1979; 2425
- 11b Han Y, Albericio F, Barany G. J. Org. Chem. 1997; 62: 4307
- 12 Kokotos CG, Kokotos G. Adv. Synth. Catal. 2009; 351: 1355
- 13a Floch L, Uher M, Leško J. Collect. Czech. Chem. Commun. 1989; 54: 206
- 13b Perkins JL, Zartman AE, Meissner RS. Tetrahedron Lett. 1999; 40: 1103
- 15a Carpenter RD, Andrei M, Lau EY, Lightstone FC, Liu R, Lam KS, Kurth MJ. J. Med. Chem. 2007; 50: 5863
- 15b Carpenter RD, DeBredt PB, Lam KS, Kurth MJ. J. Comb. Chem. 2006; 8: 907
- 15c Cee VJ, Downing NS. Tetrahedron Lett. 2006; 47: 3747
- 15d Krchňák V, Smith J, Vágner J. Tetrahedron Lett. 2001; 42: 1627
- 17a Heinelt U, Schulthesis D, Jäger J, Lindenmaier M, Pollex A, Beckmann HG. S. Tetrahedron 2004; 60: 9883
- 18 Artman III GD, Solovay CF, Adams CM, Diaz B, Dimitroff M, Ehara T, Gu D, Ma F, Liu D, Miller BR, Pick TE, Poon DJ, Ryckman D, Siesel DA, Stillwell BS, Swiftney T, van Dyck JP, Zhang C, Ji N. Tetrahedron Lett. 2010; 51: 5319
- 19a Hamley P, Tinker AC. Bioorg. Med. Chem. Lett. 1995; 5: 1573
- 19b Taniguchi K, Shigenaga S, Ogahara T, Fujitsu T, Matsuo M. Chem. Pharm. Bull. 1993; 41: 301
- 20 A tetrahedral intermediate in the formation of 2-amino-benzimidazoles has been proposed: see ref. 15c.
- 21 To the best of our knowledge, iodoacetic acid has never been used as desulfurizing agent in the synthesis of benzimid-azoles.
- 22 The structure of 1b was supported by a single-crystal X-ray analysis.
- 23 Meng G, Zheng M, Dong M, Qu Q. Org. Prep. Proced. Int. 2012; 44: 184
- 24a Erol S, Dogan I. J. Org. Chem. 2007; 72: 2494
- 24b Obushak ND, Matiichuk VS, Martyak RL. Chem. Heterocycl. Comp. 2003; 39: 878
- 24c Choubey VN, Singh H. Bull. Chem. Soc. Jpn. 1970; 43: 2233
- 25a Presumably, the proton of the 9k·HI salt resides mainly on the 2-aminopyridine moiety, thereby further decreasing its nucleophilicity [pKa (DMSO) = 27.72 for 2-amino-pyridine (ref. 25a) and pKa (DMSO) = 21.0 for thiourea (ref. 25b)]:
- 25b Bordwell FG, Algrim DJ. J. Am. Chem. Soc. 1988; 110: 2964
- 25c Bordwell FG, Ji GZ. J. Am. Chem. Soc. 1991; 113: 8398 ; Note, however, that in the crystal lattice, the proton of 8k•HI is located on the pyridine nitrogen, as evidenced by single-crystal X-ray analysis
- 26 Crystallographic data for compounds 1b and 8k have been deposited with the accession numbers CCDC 912871 and 912872, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
- 27 Determined by HPLC on a chiral stationary phase; see the experimental section for details. tert-Butyl S-trityl-l-cys-teinate of 98% ee optical purity was used as the starting material in all experiments.
- 28 Partial racemization of an asymmetric center occurred in the l-phenylglycine-derived benzimidazoles 11b (91% ee) and 12b (87% ee), as evidenced by chiral HPLC assay (see the experimental section for details).
- 29 Omar A.-MM. E, Habib NS, Aboulwafa OM. Synthesis 1977; 864
For selected recent examples of nucleophilic replacements of Cl, see:
For replacement of a methylsulfonyl group, see:
l-Cysteine is especially susceptible to racemization in solution-phase peptide synthesis, see:
It is also susceptible to racemization in solid-phase peptide synthesis, see:
For selected examples of the use of NaOAc as a base, see: