Synthesis 2013; 45(10): 1373-1379
DOI: 10.1055/s-0032-1316872
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Impregnated Magnetite as a Heterogeneous Catalyst for the Homocoupling of Terminal Alkynes

Juana M. Pérez
Departamento Química Orgánica and Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   eMail: djramon@ua.es
,
Rafael Cano
Departamento Química Orgánica and Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   eMail: djramon@ua.es
,
Miguel Yus
Departamento Química Orgánica and Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   eMail: djramon@ua.es
,
Diego J. Ramón*
Departamento Química Orgánica and Instituto de Síntesis Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Fax: +34(96)5903549   eMail: djramon@ua.es
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 29. Januar 2013

Accepted after revision: 03. März 2013

Publikationsdatum:
14. März 2013 (online)


Abstract

Copper-impregnated magnetite is a versatile heterogeneous catalytic system for the synthesis of 1,3-diynes by the homocoupling of terminal alkynes. This catalyst does not require the use of pressurized oxygen as the oxidant and it does not need a solvent or harsh conditions to give the expected products. Moreover, the catalyst can be removed from the reaction medium simply by using a magnet. The reaction occurs at the lowest copper loading reported for any heterogeneous catalyst.

Supporting Information

 
  • References

    • 1a Modern Acetylene Chemistry . Stang PJ, Diederich F. VCH; Weinheim: 1995
    • 1b Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques. Elsevier; Oxford: 2004
    • 1c Acetylene Chemistry . Diederich F, Stang PJ, Tykwinski RR. Wiley-VCH; Weinheim: 2005
  • 2 Shi Shun AL. K, Tykwinski RR. Angew. Chem. Int. Ed. 2006; 45: 1034
    • 3a Neenan TX, Whitesides GM. J. Org. Chem. 1988; 53: 2489
    • 3b Tour JM. Chem. Rev. 1996; 96: 537
    • 3c Bunz UH. F, Rubin Y, Tobe Y. Chem. Soc. Rev. 1999; 28: 107
    • 4a Ladika M, Fisk TE, Wu WW, Jons SD. J. Am. Chem. Soc. 1994; 116: 12093
    • 4b Ohkita M, Ando K, Suzuki T, Tsuji T. J. Org. Chem. 2000; 65: 4385
    • 4c Marsden JA, Haley MM. J. Org. Chem. 2005; 70: 10213
  • 5 Crowley JD, Goldup SM, Lee A.-L, Leigh DA, McBurney RT. Chem. Soc. Rev. 2009; 38: 1530

    • For reviews, see:
    • 6a Siemsen P, Livingston C, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
    • 6b Stefani HA, Guarezemini AS, Cella R. Tetrahedron 2010; 66: 7871
    • 6c Alonso F, Yus M. ACS Catal. 2012; 2: 1441
    • 7a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 7b Hay AS. J. Org. Chem. 1962; 27: 3320

      For recent references, see:
    • 8a Yadav JS, Reddy BV. S, Reddy KB, Gayathri KU, Prasad AR. Tetrahedron Lett. 2003; 44: 6493
    • 8b Lu X, Zhang Y, Luo C, Wang Y. Synth. Commun. 2006; 36: 2503
    • 8c Jiang H.-F, Tang J.-Y, Wang A.-Z, Deng G.-H, Yang S.-R. Synthesis 2006; 1155
    • 8d Kumar V, Chipeleme A, Chibale K. Eur. J. Org. Chem. 2008; 43
    • 8e Yin K, Li C, Li J, Jia X. Green Chem. 2011; 13: 591
    • 8f Zhang S, Liu X, Wang T. Adv. Synth. Catal. 2011; 353: 1463
    • 8g Schmidt R, Thorwirth R, Szuppa T, Stolle A, Ondruschka B, Hopf H. Chem. Eur. J. 2011; 17: 8129
    • 9a Toda F, Tokumaru Y. Chem. Lett. 1990; 987
    • 9b Nador F, Fortunato L, Moglie Y, Vitale C, Radivoy G. Synthesis 2009; 4027
    • 9c Wang D, Li J, Li N, Gao T, Hou S, Chen B. Green Chem. 2010; 12: 45
    • 10a Auer SM, Schneider M, Baiker A. J. Chem. Soc., Chem. Commun. 1995; 2057
    • 10b Auer SM, Wandeler R, Göbel U, Baiker A. J. Catal. 1997; 169: 1
    • 10c Zhu BC, Jiang XZ. Appl. Organomet. Chem. 2007; 21: 345
  • 11 Sharifi A, Mirzaei M, Naimi-Jamal MR. Monatsh. Chem. 2006; 137: 213
  • 12 Kuhn P, Alix A, Kumarraja M, Louis B, Pale P, Sommer J. Eur. J. Org. Chem. 2009; 423
    • 13a Oishi T, Katayama T, Yamaguchi K, Mizuno N. Chem. Eur. J. 2009; 15: 7539
    • 13b Alonso F, Melkonian T, Moglie Y, Yus M. Eur. J. Org. Chem. 2011; 2524
  • 14 Kamata K, Yamaguchi S, Kotani M, Yamaguchi K, Mizuni N. Angew. Chem. Int. Ed. 2008; 47: 2407
  • 15 Oishi T, Yamaguchi K, Mizuno N. ACS Catal. 2011; 1: 1351
  • 16 Xiao R, Yao R, Cai M. Eur. J. Org. Chem. 2012; 4178
  • 17 Meng X, Li C, Han B, Wang T, Chen B. Tetrahedron 2010; 66: 4029
    • 18a Cano R, Ramón DJ, Yus M. Tetrahedron 2011; 67: 5432
    • 18b Cano R, Ramón DJ, Yus M. J. Org. Chem. 2011; 76: 5547
    • 18c Cano R, Yus M, Ramón DJ. Tetrahedron 2011; 67: 8079
    • 18d Cano R, Yus M, Ramón DJ. ACS Catal. 2012; 2: 1070
    • 18e Cano R, Yus M, Ramón DJ. Chem. Commun. (Cambridge) 2012; 48: 7628
    • 19a Martínez R, Ramón DJ, Yus M. Adv. Synth. Catal. 2008; 350: 1235
    • 19b Martínez R, Ramón DJ, Yus M. Org. Biomol. Chem. 2009; 7: 2176
    • 19c Cano R, Yus M, Ramón DJ. Synlett 2011; 2017
    • 20a Aliaga MJ, Ramón DJ, Yus M. Org. Biomol. Chem. 2010; 8: 43
    • 20b Cano R, Ramón DJ, Yus M. J. Org. Chem. 2010; 75: 3458
    • 20c Cano R, Yus M, Ramón DJ. Tetrahedron 2012; 68: 1393
    • 20d Pérez JM, Cano R, Yus M, Ramón DJ. Eur. J. Org. Chem. 2012; 4548
  • 21 Jiang H, Zeng W, Li Y, Wu W, Huang L, Fu W. J. Org. Chem. 2012; 77: 5179
  • 22 Yu M, Pan D, Jia W, Chen W, Jiao N. Tetrahedron Lett. 2010; 51: 1287
  • 23 Feng X, Zhao Z, Yang F, Jin T, Ma Y, Bao M. J. Org. Chem. 2011; 696: 1479
  • 24 Kude K, Hayase S, Kawatsura M, Itoh T. Heteroat. Chem. 2011; 22: 397
  • 25 Mizuno N, Kamata K, Nagakawa Y, Oishi T, Yamaguchi K. Catal. Today 2010; 157: 359
  • 26 Cheng T.-P, Liao B.-S, Liu Y.-H, Peng S.-M, Liu S.-T. Dalton Trans. 2012; 41: 3468
  • 27 Nun P, Dupuy S, Gaillard S, Poater A, Cavallo L, Nolan SP. Catal. Sci. Technol. 2011; 1: 58