Synlett 2012; 23(18): 2692-2698
DOI: 10.1055/s-0032-1317473
letter
© Georg Thieme Verlag Stuttgart · New York

A Facile and Green Protocol for Nucleophilic Substitution Reactions of Sulfonate Esters by Recyclable Ionic Liquids [bmim][X]

Yajun Liu
a   Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China
b   Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women’s University, Seoul, 136-742, Korea   Fax: +82(2)9202058   Email: jchae@sungshin.ac.kr
,
Yongnan Xu
a   Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China
,
Sun Ho Jung
b   Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women’s University, Seoul, 136-742, Korea   Fax: +82(2)9202058   Email: jchae@sungshin.ac.kr
,
Junghyun Chae*
b   Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women’s University, Seoul, 136-742, Korea   Fax: +82(2)9202058   Email: jchae@sungshin.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 10 August 2012

Accepted: 17 September 2012

Publication Date:
23 October 2012 (online)


Abstract

Ionic liquids [bmim][X] (X = Cl, Br, I, OAc, SCN) are highly efficient reagents for nucleophilic substitution reactions of sulfonate esters derived from primary and secondary alcohols. The counter anions (X) of the ionic liquids, [bmim][X], effectively replace the sufonates affording the corresponding substitution products such as alkyl halides, acetates, and thiocyanides in excellent yields. The newly developed protocol is very environmentally attractive because the reactions use stoichiometric amounts of ionic liquids as sole reagents in most cases and do not require additional solvents, any other activating reagents, non-conventional equipment, or special precautions. Moreover, these ionic liquids can be readily recycled without loss of reactivity, making the whole process ‘greener’.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Wasserscheid P, Keim W. Angew. Chem. Int. Ed. 2000; 39: 3772
    • 1b Plechkova NV, Seddon KR. Chem. Soc. Rev. 2008; 37: 123
    • 1c Carlos KZ. A, Luana MA. Curr. Org. Chem. 2005; 9: 195
    • 1d Olivier-Bourbigou H, Magna L. J. Mol. Catal. A: Chem. 2002; 182–183: 419
    • 2a Rebelo LP. N, Canongia Lopes JN, Esperança JM. S. S, Filipe E. J. Phys. Chem. B 2005; 109: 6040
    • 2b Fredlake CP, Crosthwaite JM, Hert DG, Aki SN. V. K, Brennecke JF. J. Chem. Eng. Data 2004; 49: 954
    • 3a Wu B, Liu W, Zhang Y, Wang H. Chem.–Eur. J. 2009; 15: 1804
    • 3b Earle MJ, McCormac PB, Seddon KR. Green Chem. 1999; 1: 23
    • 3c Zhu H.-P, Yang F, Tang J, He M.-Y. Green Chem. 2003; 5: 38
    • 3d Rosa JN, Afonso CA. M, Santos AG. Tetrahedron 2001; 57: 4189
  • 4 Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G. Green Chem. 2006; 8: 325

    • For reviews, see:
    • 5a Davis JJ. H. Chem. Lett. 2004; 33: 1072
    • 5b Luo S, Mi X, Zhang L, Liu S, Xu H, Cheng J.-P. Angew. Chem. Int. Ed. 2006; 45: 3093
    • 5c Luo S, Zhang L, Cheng J.-P. Chem.–Asian J. 2009; 4: 1184
    • 5d Fei Z, Geldbach TJ, Zhao D, Dyson PJ. Chem.–Eur. J. 2006; 12: 2122
    • 5e Li X, Zhao D, Fei Z, Wang L. Sci. China Ser. B: Chem. 2006; 49: 385
    • 6a Song CE. Chem. Commun. 2004; 1033
    • 6b Kotti SR. S. S, Xu X, Wang Y, Headley AD, Li G. Tetrahedron Lett. 2004; 45: 7209
    • 6c Ranu BC, Banerjee S. J. Org. Chem. 2005; 70: 4517
    • 6d Revell JD, Ganesan A. Org. Lett. 2002; 4: 3071

      For reviews, see:
    • 7a Welton T. Chem. Rev. 1999; 99: 2071
    • 7b Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
    • 7c Earle MJ, Seddon KR. Pure Appl. Chem. 2000; 72: 1391
    • 7d Jorapur YR, Chi D.-Y. Bull. Korean Chem. Soc. 2006; 27: 345
    • 7e Pârvulescu VI, Hardacre C. Chem. Rev. 2007; 107: 2615
    • 7f Dupont J, de Souza RF, Suarez PA. Z. Chem. Rev. 2002; 102: 3667
    • 7g Miao W, Chan TH. Acc. Chem. Res. 2006; 39: 897
    • 7h Sheldon R. Chem. Commun. 2001; 2399
    • 7i Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR. Green Chem. 2002; 4: 147
    • 8a Gribble GW. J. Chem. Educ. 2004; 81: 1441
    • 8b Hernandes MZ, Cavalcanti SM. T, Moreira DR. M, Junior WF. A, Leite AC. L. Curr. Drug Targets 2010; 11: 303
    • 8c Häggblom MM, Bossert ID. Dehalogenation: Microbial Processes and Environmental Applications. Springer; New York: 2004: 3
    • 9a Spargo PL In Comprehensive Organic Functional Group Transformations . Vol. 2. Katritzky AR, Meth-Cohn O, Rees CW. Pergamon; Oxford: 1995: 9
    • 9b Larock RC. Comprehensive Organic Functional Group Transformations. Wiley; New York: 1999: 697
    • 10a Ortega N, Feher-Voelger A, Brovetto M, Padrón JI, Martín VS, Martín T. Adv. Synth. Catal. 2011; 353: 963
    • 10b San FilippoJ, Romano LJ. J. Org. Chem. 1975; 40: 1514
    • 10c Landini D, Quici S, Rolla F. Synthesis 1975; 430
  • 11 For a review, see: Pavlinac J, Zupan M, Laali KK, Stavber S. Tetrahedron 2009; 65: 5625
    • 12a Jadhav VH, Jang SH, Jeong HJ, Lim ST, Sohn MH, Chi DY, Kim DW. Org. Lett. 2010; 12: 3740
    • 12b Jadhav VH, Jeong HJ, Lim ST, Sohn MH, Kim DW. Org. Lett. 2011; 13: 2502
    • 12c Kim DW, Chi DY. Angew. Chem. Int. Ed. 2004; 43: 483
    • 12d Kim DW, Song CE, Chi DY. J. Am. Chem. Soc. 2002; 124: 10278
    • 12e Kim DW, Song CE, Chi DY. J. Org. Chem. 2003; 68: 4281
    • 12f Shinde SS, Lee BS, Chi DY. Org. Lett. 2008; 10: 733
  • 13 Ranu BC, Jana R. Eur. J. Org. Chem. 2005; 70: 755
  • 14 Ren RX, Wu JX. Org. Lett. 2001; 3: 3727
    • 15a Gupta N, Kad GL, Singh J. J. Mol. Catal. A: Chem. 2009; 302: 11
    • 15b Nguyen H.-P, Matondo NH, Baboulene M. Green Chem. 2003; 5: 303
    • 16a Lancaster NL, Salter PA, Welton T, Young GB. J. Org. Chem. 2002; 67: 8855
    • 16b Lancaster NL, Welton T. J. Org. Chem. 2004; 69: 5986
    • 16c Lancaster NL, Welton T, Young GB. J. Chem. Soc., Perkin Trans. 2 2001; 2267
  • 17 Park J, Chae J. Synlett 2010; 1651
  • 18 Since no elimination by-product was detected, the low yield of entry 12 was attributed to substrate instability.
  • 19 The products in Table 3, except those in entry 14, did not need further purification. The products from entry 14 were purified by column chromatography (see the Supporting Information).
  • 20 Sodium halides were previously reported for a similar reaction, but details on the reaction conversions or yields were not provided. See ref. 15b.