Synthesis 2012; 44(23): 3598-3602
DOI: 10.1055/s-0032-1317527
paper
© Georg Thieme Verlag Stuttgart · New York

A New Route to Roflumilast via Copper-Catalyzed Hydroxylation

Feng Ni
a   Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, 1320 West Beijing Road, Shanghai 200040, P. R. of China
b   Shanghai Engineering Research Center of Pharmaceutical Process, 1320 West Beijing Road, Shanghai 200040, P. R. of China   Fax: +86(21)65312830   Email: li.jianqi@sipi.com.cn
,
Jianqi Li*
a   Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, 1320 West Beijing Road, Shanghai 200040, P. R. of China
b   Shanghai Engineering Research Center of Pharmaceutical Process, 1320 West Beijing Road, Shanghai 200040, P. R. of China   Fax: +86(21)65312830   Email: li.jianqi@sipi.com.cn
› Author Affiliations
Further Information

Publication History

Received: 27 August 2012

Accepted after revision: 14 October 2012

Publication Date:
06 November 2012 (online)


Abstract

A new route to Roflumilast, a selective phosphodiesterase type 4 (PDE 4) inhibitor, is described. The synthetic procedure starts from 4-hydroxy-3-iodobenzoic acid to access the key intermediate 3-(cyclopropylmethoxy)-4-(difluoromethoxy)benzoic acid via copper-catalyzed hydroxylation and utilizes amide coupling to accomplish the synthesis of Roflumilast in 80% overall yield.

Supporting Information

 
  • References

    • 3a Williams EL, Wu T.-C. WO 2004033430 2004 ; Chem. Abstr. 2004, 140, 33920.
    • 3b Kohl B, Mueller B, Palosch W. WO 2004080967 2004 ; Chem. Abstr. 2004, 141, 277503.
    • 3c Cook DC, Jones HR, Kabir H, Lythgoe DJ, McFarlane IM, Pemberton C, Thatcher AA, Thompson DM, Walton JB. Org. Process Res. Dev. 1998; 2: 157
    • 4a Amari G, Armani E, Ghidini E. WO 2008006509 2008 ; Chem. Abstr. 2008, 148, 168589.
    • 4b Bose P, Sachdeva YP, Bathore RS, Kumar Y. WO 2005026095 2005 ; Chem. Abstr. 2005, 142, 336129.
    • 4c Liao MY, Li R, Yang SN, Zhang LD, Ding L. CN 102093194 2010 ; Chem. Abstr. 2010, 155, 67699.
  • 7 Sperry JB, Sutherland K. Org. Process Res. Dev. 2011; 15: 721
    • 8a Cockerill GS, Levett PC, Whiting DA. J. Chem. Soc., Perkin Trans. 1 1995; 1103
    • 8b Speicher A, Backes T, Hesidens K, Kolz J. Beilstein J. Org. Chem. 2009; 5: 71
  • 9 The standard sample was purchased from Sigma-Aldrich. 1H NMR (400 MHz, DMSO-d 6): δ = 13.04 (br, 1 H), 10.80 (s, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 7.43 (s, 1 H), 7.13 (d, J = 8.0 Hz, 1 H).
  • 10 The byproducts were isolated by column chromatography (hexane–EtOAc, 10:1) and confirmed by 1H NMR. Dimer byproducts: 1H NMR (400 MHz, CDCl3): δ = 7.65 (d, J = 8.0 Hz, 2 H), 7.61 (s, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 6.97 (d, J = 76.0 Hz, 1 H), 3.92 (s, 6 H), 3.90 (d, J = 6.4 Hz, 4 H), 1.16–1.36 (m, 2 H), 0.55–0.68 (m, 4 H), 0.28–0.37 (m, 4 H). Trimer byproducts: 1H NMR (400 MHz, CDCl3): δ = 7.63 (d, J = 8.0 Hz, 3 H), 7.56 (s, 3 H), 7.52 (d, J = 8.0 Hz, 3 H), 7.06 (s, 1 H), 3.91 (s, 9 H), 3.78 (d, J = 6.4 Hz, 6 H), 1.10–1.26 (m, 3 H), 0.53–0.65 (m, 6 H), 0.27–0.36 (m, 6 H).
  • 11 Amschler H, Flockerzi D, Gutterer B, Hatzelmann A, Schudt C, Beume R, Kilian U, Wolf HP. O. WO 9501338 1995 ; Chem. Abstr. 1995, 122, 239550.