Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(1): 102-104
DOI: 10.1055/s-0032-1317711
DOI: 10.1055/s-0032-1317711
letter
Oxidative Rearrangement of Tertiary Propargylic Alcohols
Further Information
Publication History
Received: 09 October 2012
Accepted after revision: 07 November 2012
Publication Date:
04 December 2012 (online)
Abstract
An oxidative rearrangement of tertiary alcohols mediated by m-CPBA is described that generates tetrasubstituted alkenes with a carboxylic acid substituent. The mechanism of the reaction is proposed to proceed through epoxidation of the alkyne to form an oxirene that undergoes a 1,2-aryl shift.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 McDonald RN, Schwab PA. J. Am. Chem. Soc. 1964; 86: 4866
- 2 Stille JK, Whitehurst DD. J. Am. Chem. Soc. 1964; 86: 4871
- 3a Ortiz de Montellano PR, Kunze KL. J. Am. Chem. Soc. 1980; 102: 7373
- 3b Crandall JK, Conover WW. II. J. Org. Chem. 1978; 43: 1323
- 3c Csizmadia IG, Font J, Strausz OP. J. Am. Chem. Soc. 1968; 90: 7360
- 4 For a review, see: Bauer EB. Synthesis 2012; 44: 1131
- 5a Angara GJ, Bovonsombat P, McNelis E. Tetrahedron Lett. 1992; 33: 2285
- 5b Bovonsombat P, McNelis E. Tetrahedron 1993; 49: 1525
- 5c Chen J.-M, Huang X. Synthesis 2004; 2459
- 5d Bovonsombat P, McNelis E. Synth. Commun. 1995; 25: 1223
- 5e Djuardi E, Bovonsombat P, McNelis E. Tetrahedron 1994; 50: 11793
- 5f Bovonsombat P, McNelis E. Tetrahedron Lett. 1993; 34: 4277
- 5g Bovonsombat P, McNelis E. Tetrahedron Lett. 1993; 34: 8205
- 6 For a review of the Meyer–Schuster rearrangement, see: Engel DA, Dudley GB. Org. Biomol. Chem. 2009; 7: 4149
- 7 Moran WJ, Rodríguez A. Org. Biomol. Chem. 2012; 10: 8590
- 8 Rodríguez A, Moran WJ. Org. Lett. 2011; 13: 2220
- 9 Typical Experimental Procedure 1-[(4-tert-Butylphenyl)ethynyl]cyclopentanol (1a, 50 mg, 0.21 mmol), m-CPBA (54 mg, 0.31 mmol), and trichloroacetic acid (51 mg, 0.31 mmol) were dissolved in MeCN (1 mL) at r.t. under a nitrogen atmosphere. The mixture was stirred overnight until solid precipitation was evident (typically less than 15 h). The reaction mixture was quenched with sat. aq Na2S2O3 solution and extracted with CH2Cl2. The organic layer was washed with sat. aq NaHCO3 solution, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel; 20:1 PE–EtOAc) to afford 2-(4-tert-butylphenyl)-2-cyclopentylideneacetic acid (3a) as a pale yellow solid (22 mg, 40%); mp 193–195 °C. IR (neat): 1252 (s), 1284 (s), 1618 (m), 1674 (s), 2955 (w) cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.32 (9 H, s), 1.58 (2 H, quin, J = 6.8 Hz), 1.76 (2 H, quin, J = 6.9 Hz), 2.23 (2 H, t, J = 7.2 Hz), 2.89 (2 H, t, J = 7.3 Hz), 7.10 (2 H, d, J = 8.4 Hz), 7.35 (2 H, d, J = 8.4 Hz), 11.35 (1 H, br). 13C NMR (100 MHz, CDCl3): δ = 26.1, 27.1, 31.7 (3 C), 34.8, 34.9, 36.5, 125.1, 125.4 (2 C), 129.2 (2 C), 135.9, 149.9, 168.1, 173.0. MS: m/z = 281.2 [M + 23]. HRMS: m/z calcd for C17H22NaO2: 281.1512; found: 281.1518.
- 10 Martín-Vaca B, Rudler H. J. Chem. Soc., Perkin Trans. 1 1997; 3119
- 11 Zhang H, Fu X, Chen J, Wang E, Liu Y, Li Y. J. Org. Chem. 2009; 74: 9351
- 12 For a review, see: Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
For example, see: