Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(3): 382-388
DOI: 10.1055/s-0032-1317956
DOI: 10.1055/s-0032-1317956
paper
Bifunctional Tertiary Phosphine-Catalyzed Cascade Michael–Henry Reaction of a β-Nitroolefin and a 2-(1-Substituted 3-oxo-3-phenylpropyl)malononitrile
Further Information
Publication History
Received: 17 August 2012
Accepted after revision: 06 December 2012
Publication Date:
21 December 2012 (online)
Abstract
The bifunctional phosphine catalyst 2′-(diphenylphosphino)biphenyl-2-ol was used in an effective synthesis of highly functionalized cyclohexanols through a cascade Michael–Henry reaction of a β-nitroolefin and a 2-(1-substituted 3-oxo-3-phenylpropyl)malononitrile. The method has the advantages of requiring mild conditions and providing a convenient workup, high diastereoselectivity, good atom economy, and a wide substrate scope, rendering it useful for the synthesis of highly functionalized cyclohexanols.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Liu Z.-J, Xu Z, Yuan Z.-Y, Lu D, Chen W, Zhou W. Catal. Lett. 2001; 72: 203
- 1b Costa MC. C, Hodson LF, Johnstone RA. W, Liu J.-Y, Whittaker D. J. Mol. Catal. A: Chem. 1999; 142: 349
- 2a Nagaraja BM, Kumar VS, Shashikala V, Padmasri AH, Reddy SS, Raju BD, Rao KS. R. J. Mol. Catal. A: Chem. 2004; 223: 339
- 2b Yi Q, Zhang J, Huang W, Liu X. Catal. Commun. 2007; 8: 1017
- 3 Maeno T, Shibuya Y. J. Physiol. (London) 1988; 401: 671
- 4a Tietze LF, Brasche G, Gericke K. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 4b Tietze LF. Chem. Rev. 1996; 96: 115
- 4c Guo H.-C, Ma J.-A. Angew. Chem. Int. Ed. 2006; 45: 354
- 4d Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
- 4e Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
- 4f Zhou J. Chem. Asian J. 2010; 05: 422
- 5a Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
- 5b Wei Y, Shi M. Acc. Chem. Res. 2010; 43: 1005
- 5c Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
- 5d Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 5e Glueck DS. Chem. Eur. J. 2008; 14: 7108
- 5f Meng X, Huang Y, Chen R. Chem. Eur. J. 2008; 14: 6852
- 5g Meng X, Huang Y, Chen R. Org. Lett. 2009; 11: 137
- 5h Shi M, Chen L.-A, Li C.-Q. J. Am. Chem. Soc. 2005; 127: 3790
- 5i Han X, Wang Y, Zhong F, Lu Y. J. Am. Chem. Soc. 2011; 133: 1726
- 5j Han X, Zhong F, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2012; 51: 767
- 5k Song H.-L, Yuan K, Wu X.-Y. Chem. Commun. (Cambridge) 2011; 47: 1012
- 5l Wang Y, Yu Z.-H, Zheng H.-F, Shi D.-Q. Org. Biomol. Chem. 2012; 10: 7739
- 6a Berner OM, Tedeschi L, Enders D. Eur. J. Org. Chem. 2002; 1877
- 6b Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 3221
- 6c Almasi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
- 6d Ding M, Zhou F, Qian Z.-Q, Zhou J. Org. Biomol. Chem. 2010; 8: 2912
- 6e Li X, Zhang B, Xi Z.-G, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 416
- 6f Liu X.-L, Wu Z.-J, Du X.-L, Zhang X.-M, Yuan W.-C. J. Org. Chem. 2011; 76: 4008
- 7a Andrés JM, Manzano R, Pedrosa R. Chem. Eur. J. 2008; 14: 5116
- 7b Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 8a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 8b Cao C.-L, Ye M.-C, Sun X.-L, Tang Y. Org. Lett. 2006; 8: 2901
- 8c Liu K, Cui H.-F, Nie J, Dong K.-Y, Li X.-J, Ma J.-A. Org. Lett. 2007; 9: 923
- 8d Cao Y.-J, Lai Y.-Y, Wang X, Li Y.-J, Xiao W.-J. Tetrahedron Lett. 2007; 48: 21
- 8e Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 9a Zhang X.-J, Liu S.-P, Li X.-M, Yan M, Chan AS. C. Chem. Commun. (Cambridge) 2009; 833
- 9b Wang J, Li H, Lou B, Guo H, Wang W. Chem. Eur. J. 2006; 12: 4321
- 10 Wu R, Chang X, Lu A, Wang Y, Wu G, Song H, Zhou Z, Tang C. Chem. Commun. (Cambridge) 2011; 47: 5034
- 11 Pansare SV, Pandya K. J. Am. Chem. Soc. 2006; 128: 9624
- 12 Wang W.-H, Wang X.-B, Kodama K, Hirose T, Zhang G.-Y. Tetrahedron 2010; 66: 4970
- 13 Zheng Z, Perkins BL, Ni B. J. Am. Chem. Soc. 2010; 132: 50
- 14a Tan B, Chua PJ, Li Y, Zhong G. Org. Lett. 2008; 10: 2437
- 14b Albertshofer K, Tan B, Barbas III CF. Org. Lett. 2012; 14: 1834
- 15 Zhang B, Cai L, Song H, Wang Z, He Z. Adv. Synth. Catal. 2010; 352: 97
- 16a Stewart IC, Bergman RG, Toste FD. J. Am. Chem. Soc. 2003; 125: 8696
- 16b Wang X, Li S, Jiang Y. J. Phys. Chem. A 2005; 109: 10770
- 17a Xie P, Huang Y, Lai W, Meng X, Chen R. Org. Biomol. Chem. 2011; 9: 6707
- 17b Uozumi Y, Tanahashi A, Lee S.-Y, Hayashi T. J. Org. Chem. 1993; 58: 1945
- 18a McNulty J, Steere JA, Wolf S. Tetrahedron Lett. 1998; 39: 8013
- 18b Fujii M. Bull. Chem. Soc. Jpn. 1988; 61: 4029
- 19a Zahouily M, Bahlaouan B, Aadil M, Rayadh A, Sebti S. Org. Process Res. Dev. 2004; 8: 275
- 19b Kakinuma T, Chiba R, Oriyama T. Chem. Lett. 2008; 37: 1204
- 19c Yang W, Jia Y, Du D.-M. Org. Biomol. Chem. 2012; 10: 332
- 19d Shi J, Wang M, He L, Zheng K, Liu X, Lin L, Feng X. Chem. Commun. (Cambridge) 2009; 4711
For domino reactions, see:
For phosphine catalysis, see:
For Michael addition reactions of nitroolefins, see:
For oxo-Michael addition catalyzed by trimethylphosphine, see:
For theoretical studies, see:
For Michael additions of malononitrile to chalcones, see: