Synlett 2013; 24(7): 868-872
DOI: 10.1055/s-0032-1318405
letter
© Georg Thieme Verlag Stuttgart · New York

Superacid-Promoted Dual C–C Bond Formation by Friedel–Crafts Alkylation and Acylation of Ethyl Cinnamates: Synthesis of Indanones

Bokka Venkat Ramulu
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
,
Alavala Gopi Krishna Reddy
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
,
Gedu Satyanarayana*
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
› Author Affiliations
Further Information

Publication History

Received: 01 February 2013

Accepted after revision: 17 February 2013

Publication Date:
06 March 2013 (online)


Dedicated to the memory of my mentor Prof. A. Srikrishna (1955–2013), an outstanding organic chemist and a constant source of inspiration.

Abstract

A superacid (triflic acid) promoted dual C–C bond formation via intermolecular Friedel–Crafts alkylation (Michael addition type) and intramolecular acylation for the efficient synthesis of 3-substituted indan-1-ones is presented. This method was successful in activating ethyl cinnamates towards dual aromatic electrophilic substitution. Moreover, it enabled us to synthesize novel spirotetracyclic systems.

Supporting Information

 
  • References and Notes

  • 1 Friedel C, Crafts JM. C. R. Hebd. Seances Acad. Sci. 1877; 84: 1450

    • For reviews, see:
    • 2a Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227
    • 2b Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
    • 2c Sartori JM, Maggi R. Chem. Rev. 2011; 111: 181
    • 2d Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: No. 6
    • 2e Shi M, Lu J.-M, Wei Y, Shao L.-X. Acc. Chem. Res. 2012; 45: 641
    • 3a Gore PH In FriedelCrafts and Related Reactions . Olah GA. John Wiley and Sons; London: 1964. Part 1 Vol. III. 1
    • 3b Olah GA, Klumpp DA. Superelectrophiles and Their Chemistry . Wiley; New York: 2008
    • 4a Sai KK. S, Tokarz MJ, Malunchuk AP, Zheng C, Gilbert TM, Klumpp DA. J. Am. Chem. Soc. 2008; 130: 14388
    • 4b Zhang Y, Sheets MR, Raja EK, Boblak KN, Klumpp DA. J. Am. Chem. Soc. 2011; 133: 8467
    • 4c Evans DA, Fandrick KR. Org. Lett. 2006; 8: 2249
    • 4d Rose MD, Cassidy MP, Rashatasakhon P, Padwa A. J. Org. Chem. 2007; 72: 538
    • 4e Wu Y.-C, Liu L, Liu Y.-L, Wang D, Chen Y.-J. J. Org. Chem. 2007; 72: 9383
    • 5a Suzuki T, Ohwada T, Shudo K. J. Am. Chem. Soc. 1997; 119: 6774
    • 5b Ohwada T, Suzuki T, Shudo K. J. Am. Chem. Soc. 1998; 120: 4629
    • 5c Kurouchi H, Sugimoto H, Otani Y, Ohwada T. J. Am. Chem. Soc. 2010; 132: 807
    • 5d Colquhoun HM, Lewis DF, Williams DJ. Org. Lett. 2001; 3: 2337
    • 5e Fillion E, Fishlock D. Org. Lett. 2003; 5: 4653
    • 5f Wang Q, Padwa A. Org. Lett. 2006; 8: 601
    • 5g Chassaing S, Kumarraja M, Pale P, Sommer J. Org. Lett. 2007; 9: 3889
    • 5h Saito A, Umakoshi M, Yagyu N, Hanzawa Y. Org. Lett. 2008; 10: 1783
    • 5i Tang S, Xu Y, He J, He Y, Zheng J, Pan X, She X. Org. Lett. 2008; 10: 1855
    • 5j Kangani CO, Day BW. Org. Lett. 2008; 10: 2645
    • 5k Kim K, Kim I. Org. Lett. 2010; 12: 5314
    • 5l Chinnagolla RK, Jeganmohan M. Org. Lett. 2012; 14: 5246
    • 5m Eom D, Park S, Park Y, Ryu T, Lee PH. Org. Lett. 2012; 14: 5392
    • 5n Klumpp DA, Baek DN, Prakash GK. S, Olah GA. J. Org. Chem. 1997; 62: 6666
    • 5o Rendy R, Zhang Y, McElrea A, Gomez A, Klumpp DA. J. Org. Chem. 2004; 69: 2340
    • 5p Bhar SS, Ramana MM. V. J. Org. Chem. 2004; 69: 8935
    • 5q Womack GB, Angeles JG, Fanelli VE, Heyer CA. J. Org. Chem. 2007; 72: 7046
    • 5r Sai KK. S, Esteves PM, Penha ET. D, Klumpp DA. J. Org. Chem. 2008; 73: 6506
    • 5s Prakash GK. S, Paknia F, Vaghoo H, Rasul G, Mathew T, Olah GA. J. Org. Chem. 2010; 75: 2219
    • 5t Raja EK, DeSchepper DJ, Lill SO. N, Klumpp DA. J. Org. Chem. 2012; 77: 5788
    • 5u Choi YL, Kim BT. Heo J.-N. J. Org. Chem. 2012; 77: 8762
    • 5v Mahoney SJ, Moon DT, Hollinger J, Fillion E. Tetrahedron Lett. 2009; 50: 4706
    • 5w Aikawa H, Tago S, Umetsu K, Haginiwa N, Asao N. Tetrahedron 2009; 65: 1774
  • 6 Olah GA, Germain A, Lin HC, Forsyth DA. J. Am. Chem. Soc. 1975; 97: 2928
    • 7a Chang YH, Ford WT. J. Org. Chem. 1981; 46: 3758
    • 7b Nishimoto Y, Babu SA, Yasuda M, Baba A. J. Org. Chem. 2008; 73: 9465
    • 7c Wrona-Piotrowicz A, Cegliński D, Zakrzewski J. Tetrahedron Lett. 2011; 52: 5270
    • 7d Fillion E, Fishlock D, Wilsily A, Goll JM. J. Org. Chem. 2005; 70: 1316
  • 8 Hwang JP, Prakash GK. S, Olah GA. Tetrahedron 2000; 56: 7199
    • 9a Hammett LP. Chem. Rev. 1935; 17: 125
    • 9b Hammett LP. J. Am. Chem. Soc. 1937; 59: 96
    • 9c King JF, Rathore R, Guo Z, Li M, Payne NC. J. Am. Chem. Soc. 2000; 122: 10308
    • 9d Bruckner R. Organic Mechanisms: Reactions, Stereochemistry and Synthesis. Harmata M. Springer; Berlin: 2010
    • 10a Hashmi AS. K, Schwarz L, Choi J.-H. Angew. Chem. Int. Ed. 2000; 39: 2285; Angew. Chem. 2000; 112 2382
    • 10b Gerald Dyker G, Muth E, Hashmi AS. K, Ding L. Adv. Synth. Catal. 2003; 345: 1247
    • 10c Hashmi AS. K, Schwarz L, Rubenbauer P, Blanco MC. Adv. Synth. Catal. 2006; 348: 705
  • 11 Ito T, Tanaka T, Iinuma M, Nakaya K.-i, Takahashi Y, Sawa R, Murata J, Darnaedi D. J. Nat. Prod. 2004; 67: 932
  • 12 Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K. J. Med. Chem. 1995; 38: 4821
    • 13a Dolling U.-H, Davis P, Grabowski EJ. J. J. Am. Chem. Soc. 1984; 106: 446
    • 13b deSolms SJ, Woltersdorf Jr. OW, Cragoe Jr. EJ. J. Med. Chem. 1978; 21: 437
    • 14a Banerjee M, Mukhopadhyay R, Achari B, Banerjee AK. J. Org. Chem. 2006; 71: 2787
    • 14b Lomberget T, Bentz E, Bouyssi D, Balme G. Org. Lett. 2003; 5: 2055
    • 14c Banerjee M, Makhopadhyay R, Achari B, Banerjee AK. Org. Lett. 2003; 5: 3931

    • For isolation, see:
    • 14d Lin W.-H, Fang J.-M, Cheng Y.-S. Phytochemistry 1995; 40: 871
  • 15 General Procedure for Friedel–Crafts Alkylation and Acylation of Ethyl Cinnamates (GP-1)To an oven-dried Schlenk tube under nitrogen atmosphere were added ester 1 (100 mg, 0.42–0.57 mmol), arene 2 (in case of benzene, toluene, and xylene 12 equiv and for other electron-rich arenes 1.5 equiv were used for 1 equiv of ester 1) and DCE (2 mL), followed by the addition of TfOH [3 equiv (i.e., 1.26–1.71 mmol)]. The resultant reaction mixture was stirred at 80 °C for 12–24 h. Progress of the reaction was monitored by TLC until the reaction was completed. The reaction mixture was quenched by the addition of aq NaHCO3 and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were washed with sat. NaCl solution, dried (Na2SO4), and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (PE–EtOAc) furnished the indanone 3 (54–92%).Representative Analytical DataCompound 3f: IR (MIR-ATR, 4000–600 cm–1): 2966, 2930, 1710, 1602, 1491, 1462, 1288, 1234, 1151, 1093, 1012, 828, 762, 674, 582 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, 1 H, J = 7.3 Hz, ArH), 7.60 (dd, 1 H, J = 7.8, 7.3 Hz, ArH), 7.43 (dd, 1 H, J = 7.8, 7.3 Hz, ArH), 7.25 (d, 1 H, J = 7.8 Hz, ArH), 7.24 (ddd, 2 H, J=8.8, 2.4, 2.4 Hz, ArH), 7.10 (ddd, 2 H, J = 8.8, 2.4, 2.4 Hz, ArH), 2.91 (d, 1 H, J = 19.1 Hz, CHa HbCO), 2.88 (d, 1 H, J = 19.1 Hz, CHa Hb CO), 1.81 [s, 3 H, ArC(CH2CO)CH 3] ppm. 13C NMR (100 MHz, CDCl3): δ = 205.3 (s, C=O), 162.3 (s, ArC), 145.8 (s, ArC), 135.6 (s, ArC), 135.4 (d, ArCH), 132.3 (s, ArC), 128.5 (d, 2 C, ArCH), 128.0 (d, ArCH), 127.7 (d, 2 C, ArCH), 125.4 (d, ArCH), 123.4 (d, ArCH), 55.5 (t, CH2CO), 45.6 [s, ArC(CH2CO)CH3], 28.3 [q, ArC(CH2CO)CH3] ppm. HRMS (APCI+): m/z calcd for [C16H14ClO]+: 257.0728 [M + H]+; found: 257.0724.Compound 3g: IR (MIR-ATR, 4000–600 cm–1): 2964, 2851, 1705, 1581, 1488, 1399, 1282, 1244, 1160, 1093, 826, 724, 665, 588 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.57 (s, 1 H, ArH), 7.42 (d, 1 H, J = 7.8 Hz, ArH), 7.22 (ddd, 2 H, J = 8.8, 2.4, 2.4 Hz, ArH), 7.14 (d, 1 H, J = 7.8 Hz, ArH), 7.10 (ddd, 2 H, J = 8.8, 2.4, 2.4 Hz, ArH), 2.89 (d, 1 H, J = 19.1 Hz, CHa HbCO), 2.87 (d, 1 H, J = 19.1 Hz, CHa Hb CO), 2.42 (s, 3 H, ArCH3), 1.78 [s, 3 H, ArC(CH2CO)CH3] ppm. 13C NMR (100 MHz, CDCl3): δ = 205.4 (s, C=O), 159.7 (s, ArC), 146.1 (s, ArC), 138.0 (s, ArC), 136.6 (d, ArCH), 135.9 (s, ArC), 132.2 (s, ArC), 128.5 (d, 2 C, ArCH), 127.6 (d, 2 C, ArCH), 125.1 (d, ArCH), 123.3 (d, ArCH), 55.8 (t, CH2CO), 45.3 [s, ArC(CH2CO)CH3], 28.3 [q, ArC(CH2CO)CH3], 21.1 (q, ArCH3) ppm. HRMS (APCI+): m/z calcd for [C17H16ClO]+: 271.0884 [M + H]+; found: 271.0880.