Klinische Neurophysiologie 2012; 43(03): 206-209
DOI: 10.1055/s-0032-1321911
Felix-Jerusalem-Preis
© Georg Thieme Verlag KG Stuttgart · New York

Neue Forschungsansätze zur axonalen Schädigung und Regeneration bei peripheren Neuropathien

Peripheral Neuropathy: Novel Insights into Mechanisms of Axonal Injury and Regeneration
H. C. Lehmann
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
14 September 2012 (online)

Zusammenfassung

Periphere Neuropathien sind häufig mit gravierenden motorischen Defiziten vergesellschaftet, die unter anderem auf eine axonale Schädigung bzw. eine inkomplette axonale Regeneration peripherer Motoneurone zurückgeführt werden können. Trotz wissenschaftlicher Fortschritte auf diesem Gebiet gibt es momentan keine medikamentöse Therapie, um gezielt eine Regeneration geschädigter Axone bei Polyneuropathien zu unterstützen. Gründe hierfür sind zum einen, dass bei Polyneuropathien unterschiedlicher Genese teilweise Pathomechanismen beteiligt sind, die aktiv eine Regeneration peripherer Axone inhibieren können. Die Charakterisierung solcher Pathomechanismen auf zellulärer und molekularer Ebene könnte daher ein Lösungsansatz darstellen, um axonale Regeneration medikamentös zu unterstützen. Ein weiteres Problem bei der Entwicklung medikamentöser Therapien im peripheren Nervensystem (PNS) besteht darin, dass axonale Regeneration im peripheren Nervensystem mit den üblichen klinischen bzw. elektrophysiologischen Messmethoden nur unzureichend erfasst werden kann. Die Weiterentwicklung von MRT-Bildgebungsmethoden könnte ein Ansatz darstellen, um axonale Regeneration seriell und non-invasiv zu messen, um so beispielsweise den Beobachtungszeitraum bei klinischen Studien zur Regeneration im PNS zu reduzieren.

Abstract

Peripheral neuropathies are frequently associated with significant motor deficits that can be attributed to axonal injury and incomplete axonal regeneration of peripheral motoneurons. Despite significant advances in our understanding of the underlying pathogenesis, there is currently no treatment available to enhance axonal regeneration in peripheral neuropathy. One explanation is that in some neuropathic conditions there are pathomechanisms acting that are able to substantially inhibit regeneration of axons with otherwise sufficient regenerative properties. The identification of the underlying cellular and molecular pathways of these processes may open up new avenues to support axonal regeneration in the peripheral nervous system (PNS). The lack of reliable and feasible outcome measures for axonal regeneration in the PNS represents another caveat that prevents the development of new therapeutic strategies. The use of novel MRI-techniques may represent a way to overcome this hurdle for example as outcome parameter for axonal regeneration in clinical trials.

 
  • Literatur

  • 1 Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254
  • 2 Bersano A, Carpo M, Allaria S et al. Long term disability and social status change after Guillain-Barré syndrome. J Neurol 2006; 253: 214-218
  • 3 Cheng YJ, Gregg EW, Kahn HS et al. Peripheral insensate neuropathy – a tall problem for US adults?. Am J Epidemiol 2006; 164: 873-880
  • 4 Cherry CL, Affandi JS, Imran D et al. Age and height predict neuropathy risk in patients with HIV prescribed stavudine. Neurology 2009; 73: 315-320
  • 5 Conti G, Rostami A, Scarpini E et al. Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol 2004; 187: 350-358
  • 6 Dalakas M, Semino-Mora C, Leon-Monzon M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2'3'-dideoxycytidine (ddC). Lab Invest 2001; 81: 1537-1544
  • 7 Duran-Jimenez B, Dobler D, Moffatt S et al. Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 2009; 58: 2893-2903
  • 8 Ebenezer GJ, O’Donnell R, Hauer P et al. Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. Brain 2011; 134: 1853-1863
  • 9 Hartung HP, Lehmann HC, Kieseier BC et al. Novel treatment for immune neuropathies on the horizon. J Peripher Nerv Syst 2011; 16: 75-83
  • 10 Ho TW, Willison HJ, Nachamkin I et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré, syndrome. Ann Neurol 1999; 45: 168-173
  • 11 Hoffman PN. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 2010; 223: 11-18
  • 12 Kakuda T, Fukuda H, Tanitame K et al. Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology 2011; 53: 955-960
  • 13 Kamakura K, Kaida K, Kusunoki S et al. Harmful effects of anti-GalNAc-GD1a antibodies and TNF-alpha on rat dorsal root ganglia. J Peripher Nerv Syst 2005; 10: 190-201
  • 14 Kapoor R, Davies M, Blaker PA et al. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated axonal degeneration. Brain 2003; 53: 174-180
  • 15 Karamoysoyli E, Burnand RC, Tomlinson DR et al. Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy. Diabetes 2008; 57: 181-189
  • 16 Kato K, Liu H, Kikuchi S et al. Immediate anti-tumor necrosis factor-alpha (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res 2010; 88: 360-368
  • 17 Kim J, Loy D, Liang H et al. Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med 2007; 58: 253-260
  • 18 Krasnianski A, Deschauer M, Neudecker S et al. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain 2005; 128: 1870-1876
  • 19 Kuwabara S, Misawa S, Mori M et al. Long term prognosis of chronic inflammatory demyelinating polyneuropathy: a five year follow up of 38 cases. J Neurol Neurosurg Psychiatry 2006; 77: 66-70
  • 20 Lehmann HC, Zhang J, Mori S et al. Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 2010; 223: 238-244
  • 21 Lehmann HC, Hughes RA, Kieseier BC et al. Recent developments and future directions in Guillain-Barré syndrome. Journal Peripheral Nervous System 2012; in press
  • 22 Lehmann HC, Chen W, Borzan J et al. Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann Neurol 2011; 69: 100-110
  • 23 Lehmann HC, Lopez PH, Zhang G et al. Passive immunization with anti-ganglioside antibodies directly inhibits axon regeneration in an animal model. J Neurosci 2007; 27: 27-34
  • 24 Lehmann HC, Kohne A, Meyer zu Horste G et al. Role of nitric oxide as mediator of nerve injury in inflammatory neuropathies. J Neuropathol Exp Neurol 2007; 66: 305-312
  • 25 Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006; 51: 527-539
  • 26 Putzu GA, Figarella-Branger D, Bouvier-Labit C et al. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain-Barré syndrome. J Neurol Sci 2000; 174: 16-21
  • 27 Redford EJ, Kapoor R, Smith KJ. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 1997; 120: 2149-2157
  • 28 Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009; 65 (Suppl. 01) S3-S9
  • 29 Smith KJ, Kapoor R, Hall SM et al. Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 2001; 49: 470-476
  • 30 Sun S, Liang H, Schmidt R et al. Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 2007; 28: 30-38
  • 31 Willison HJ, Veitch J, Paterson G et al. Miller Fisher syndrome is associated with serum antibodies to GQ1b ganglioside. J Neurol Neurosurg Psychiatry 1993; 56: 204-206
  • 32 Winer JB, Hughes RA, Greenwood RJ et al. Prognosis in Guillain-Barre syndrome. Lancet 1985; 1: 1202-1203
  • 33 Zhang G, Lehmann HC, Manoharan S et al. Anti-ganglioside antibody-mediated activation of RhoA induces inhibition of neurite outgrowth. J Neurosci 2011; 31: 1664-1675
  • 34 Zielasek J, Jung S, Gold R et al. Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J Neuroimmunol 1995; 58: 81-88