J Knee Surg 2012; 25(03): 197-206
DOI: 10.1055/s-0032-1322602
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biomechanical Outcomes of Cartilage Repair of the Knee

Carmen E. Quatman
1   Sports Health and Performance Institute, The Ohio State University, Columbus, Ohio
2   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
,
Joshua D. Harris
2   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
,
Timothy E. Hewett
1   Sports Health and Performance Institute, The Ohio State University, Columbus, Ohio
2   Department of Orthopaedics, The Ohio State University, Columbus, Ohio
3   Sports Medicine Biodynamics Center Cincinnati Children's Hospital, Cincinnati, Ohio
4   Departments of Physiology and Cell Biology, Family Medicine, and Biomedical Engineering, The Ohio State University, Columbus, Ohio
› Author Affiliations
Further Information

Publication History

15 March 2012

16 May 2012

Publication Date:
30 July 2012 (online)

Abstract

Cartilage repair and restoration has become an increasingly popular surgical technique to provide symptomatic relief to young patients with focal articular cartilage defects. Given the high level of interest and improvement in surgical techniques to perform cartilage repair or restoration, it is important that patient-reported, surgical and functional outcomes are evaluated both in the short term and long term. Despite the high levels of interest in cartilage repair and restoration techniques, there are few studies that have evaluated the effects of cartilage surgery on biomechanical and neuromuscular function of the joint and the lower extremity. The focus of the following review is to evaluate the current evidence available on biomechanical functional outcomes after cartilage repair with clinical applications to the rehabilitation process.

 
  • References

  • 1 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (4) 456-460
  • 2 Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes' knees: a systematic review. Med Sci Sports Exerc 2010; 42 (10) 1795-1801
  • 3 Heir S, Nerhus TK, Røtterud JH , et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 2010; 38 (2) 231-237
  • 4 Fregly BJ, Besier TF, Lloyd DG , et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res 2012; 30 (4) 503-513
  • 5 D'Lima DD, Patil S, Steklov N, Chien S, Colwell Jr CW. In vivo knee moments and shear after total knee arthroplasty. J Biomech 2007; 40 (Suppl. 01) S11-S17
  • 6 Heinlein B, Kutzner I, Graichen F , et al. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months. Clin Biomech (Bristol, Avon) 2009; 24 (4) 315-326
  • 7 Reilly DT, Martens M. Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop Scand 1972; 43 (2) 126-137
  • 8 Herzog W, Longino D, Clark A. The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 2003; 388 (5) 305-315
  • 9 Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res 1991; 9 (1) 113-119
  • 10 Shelburne KB, Torry MR, Pandy MG. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 2006; 24 (10) 1983-1990
  • 11 Sasaki K, Neptune RR. Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech 2010; 43 (14) 2780-2784
  • 12 Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Am J Sports Med 2004; 32 (6) 1451-1458
  • 13 Lefkoe TP, Trafton PG, Ehrlich MG , et al. An experimental model of femoral condylar defect leading to osteoarthrosis. J Orthop Trauma 1993; 7 (5) 458-467
  • 14 Flanigan DC, Harris JD, Brockmeier PM, Siston RA. The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model. Arthroscopy 2010; 26 (12) 1655-1661
  • 15 Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects. Orthopedics 1997; 20 (6) 525-538
  • 16 Henderson IJ, La Valette DP. Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee 2005; 12 (6) 435-440
  • 17 Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; (213) 34-40
  • 18 Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 2006; 14 (9) 834-842
  • 19 Mithoefer K, Williams III RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006; 34 (9) 1413-1418
  • 20 Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 2005; 13 (3) 213-221
  • 21 Kreuz PC, Steinwachs MR, Erggelet C , et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006; 14 (11) 1119-1125
  • 22 Blevins FT, Steadman JR, Rodrigo JJ, Silliman J. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 1998; 21 (7) 761-767 , discussion 767–768
  • 23 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 24 Oneto JM, Ellermann J, LaPrade RF. Longitudinal evaluation of cartilage repair tissue after microfracture using T2-mapping: a case report with arthroscopic and MRI correlation. Knee Surg Sports Traumatol Arthrosc 2010; 18 (11) 1545-1550
  • 25 Magnussen RA, Dunn WR, Carey JL, Spindler KP. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 2008; 466 (4) 952-962
  • 26 Saris DB, Vanlauwe J, Victor J , et al; TIG/ACT/01/2000&EXT Study Group. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (Suppl. 01) 10S-19S
  • 27 Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 2010; 92 (12) 2220-2233
  • 28 Quatman CE, Quatman-Yates CC, Hewett TEA. A 'plane' explanation of anterior cruciate ligament injury mechanisms: a systematic review. Sports Med 2010; 40 (9) 729-746
  • 29 Woo SL, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 2006; 39 (1) 1-20
  • 30 Buckwalter JA, Einhorn TA, O'Keefe RJ. American Academy of Orthopaedic Surgeons. Orthopaedic basic science: foundations of clinical practice. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2007. :xiv, 465 p.
  • 31 Pope MH, Crowninshield R, Miller R, Johnson R. The static and dynamic behavior of the human knee in vivo. J Biomech 1976; 9 (7) 449-452
  • 32 Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 2000; 82 (8) 1189-1195
  • 33 Pinskerova V, Iwaki H, Freeman MA. The shapes and relative movements of the femur and tibia at the knee. Orthopade 2000; 29 (Suppl. 01) S3-S5
  • 34 Scott WN. Surgery of the Knee. 4th ed. Philadelphia: Churchill Livingstone/Elsevier; 2006
  • 35 Koo S, Rylander JH, Andriacchi TP. Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee. J Biomech 2011; 44 (7) 1405-1409
  • 36 Koo S, Andriacchi TP. A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J Biomech 2007; 40 (13) 2961-2966
  • 37 Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G. Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res 2003; 410 (410) 25-34
  • 38 Freeman MA, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech 2005; 38 (2) 197-208
  • 39 Koo S, Andriacchi TP. The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 2008; 41 (6) 1269-1273
  • 40 Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 1984; 66 (5) 715-724
  • 41 Miller RK, Murray DW, Gill HS, O'Connor JJ, Goodfellow JW. In vitro patellofemoral joint force determined by a non-invasive technique. Clin Biomech (Bristol, Avon) 1997; 12 (1) 1-7
  • 42 Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br 1976; 58 (3) 287-290
  • 43 Neumann DA. Kinesiology of the musculoskeletal system: foundations for rehabilitation. 2nd ed. St. Louis, Mo: Mosby/Elsevier; 2010. :xx, 725 p.
  • 44 Besier TF, Draper CE, Gold GE, Beaupré GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res 2005; 23 (2) 345-350
  • 45 Mithoefer K, Hambly K, Logerstedt DS, Ricci M, Silvers H, Della Villa S. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 2012; 42 (3) 254-273
  • 46 Brandt KD. Response of joint structures to inactivity and to reloading after immobilization. Arthritis Rheum 2003; 49 (2) 267-271
  • 47 Haapala J, Arokoski J, Pirttimäki J , et al. Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med 2000; 21 (1) 76-81
  • 48 Haapala J, Arokoski JP, Hyttinen MM , et al. Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res 1999; (362) 218-229
  • 49 Hagiwara Y, Ando A, Chimoto E, Saijo Y, Ohmori-Matsuda K, Itoi E. Changes of articular cartilage after immobilization in a rat knee contracture model. J Orthop Res 2009; 27 (2) 236-242
  • 50 O'Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 1986; 68 (7) 1017-1035
  • 51 O'Driscoll SW, Salter RB. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 1986; (208) 131-140
  • 52 Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am 1980; 62 (8) 1232-1251
  • 53 Fazalare JA, Griesser MJ, Siston RA, Flanigan DC. The use of continuous passive motion following knee cartilage defect surgery: a systematic review. Orthopedics 2010; 33 (12) 878
  • 54 Howard JS, Mattacola CG, Romine SE, Lattermann C. Continuous Passive Motion, Early Weight Bearing, and Active Motion following Knee Articular Cartilage Repair Evidence for Clinical Practice. Cartilage 2010; 1 (4) 276-286
  • 55 Alfredson H, Lorentzon R. Superior results with continuous passive motion compared to active motion after periosteal transplantation. A retrospective study of human patella cartilage defect treatment. Knee Surg Sports Traumatol Arthrosc 1999; 7 (4) 232-238
  • 56 Marder RA, Hopkins Jr G, Timmerman LA. Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthroscopy 2005; 21 (2) 152-158
  • 57 Schultz W, Göbel D. Articular cartilage regeneration of the knee joint after proximal tibial valgus osteotomy: a prospective study of different intra- and extra-articular operative techniques. Knee Surg Sports Traumatol Arthrosc 1999; 7 (1) 29-36
  • 58 Rodrigo JJ, Steadman JR, Silliman JF, Fulstone HA. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 1994; 7 (3) 109-116
  • 59 Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 2006; 34 (6) 1020-1038
  • 60 Andriacchi TP, Koo S, Scanlan SF. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 2009; 91 (Suppl) (1) 95-101
  • 61 Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 2008; 40 (2) 215-222
  • 62 Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993; 75 (4) 532-553
  • 63 Gikas PD, Morris T, Carrington R, Skinner J, Bentley G, Briggs T. A correlation between the timing of biopsy after autologous chondrocyte implantation and the histological appearance. J Bone Joint Surg Br 2009; 91 (9) 1172-1177
  • 64 Gikas PD, Bayliss L, Bentley G, Briggs TW. An overview of autologous chondrocyte implantation. J Bone Joint Surg Br 2009; 91 (8) 997-1006
  • 65 Arokoski JP, Jurvelin JS, Väätäinen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 2000; 10 (4) 186-198
  • 66 Adouni M, Shirazi-Adl A. Knee joint biomechanics in closed-kinetic-chain exercises. Comput Methods Biomech Biomed Engin 2009; 12 (6) 661-670
  • 67 Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc 2001; 33 (1) 127-141
  • 68 Ebert JR, Lloyd DG, Smith A, Ackland T, Wood DJ. The association between external-ground-reaction force and knee-joint kinetics during partial- and full-weight-bearing gait. Clin Biomech (Bristol, Avon) 2010; 25 (4) 359-364
  • 69 Ebert JR, Ackland TR, Lloyd DG, Wood DJ. Accuracy of partial weight bearing after autologous chondrocyte implantation. Arch Phys Med Rehabil 2008; 89 (8) 1528-1534
  • 70 Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002; 30 (1) 2-12
  • 71 Wondrasch B, Zak L, Welsch GH, Marlovits S. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study. Am J Sports Med 2009; 37 (Suppl. 01) 88S-96S
  • 72 Ebert JR, Robertson WB, Lloyd DG, Zheng MH, Wood DJ, Ackland T. Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthritis Cartilage 2008; 16 (10) 1131-1140
  • 73 van Eijden TM, Kouwenhoven E, Verburg J, Weijs WA. A mathematical model of the patellofemoral joint. J Biomech 1986; 19 (3) 219-229
  • 74 Wallace DA, Salem GJ, Salinas R, Powers CM. Patellofemoral joint kinetics while squatting with and without an external load. J Orthop Sports Phys Ther 2002; 32 (4) 141-148
  • 75 Ebert JR, Lloyd DG, Ackland T, Wood DJ. Knee biomechanics during walking gait following matrix-induced autologous chondrocyte implantation. Clin Biomech (Bristol, Avon) 2010; 25 (10) 1011-1017
  • 76 Ebert JR, Lloyd DG, Wood DJ, Ackland TR. Isokinetic knee extensor strength deficit following matrix-induced autologous chondrocyte implantation. Clin Biomech (Bristol, Avon) 2012; Feb 14 [Epub ahead of print]
  • 77 Løken S, Ludvigsen TC, Høysveen T, Holm I, Engebretsen L, Reinholt FP. Autologous chondrocyte implantation to repair knee cartilage injury: ultrastructural evaluation at 2 years and long-term follow-up including muscle strength measurements. Knee Surg Sports Traumatol Arthrosc 2009; 17 (11) 1278-1288
  • 78 Van Assche D, Staes F, Van Caspel D , et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 2010; 18 (4) 486-495
  • 79 Van Assche D, Van Caspel D, Vanlauwe J , et al. Physical activity levels after characterized chondrocyte implantation versus microfracture in the knee and the relationship to objective functional outcome with 2-year follow-up. Am J Sports Med 2009; 37 (Suppl. 01) 42S-49S
  • 80 Ericsson YB, Roos EM, Dahlberg L. Muscle strength, functional performance, and self-reported outcomes four years after arthroscopic partial meniscectomy in middle-aged patients. Arthritis Rheum 2006; 55 (6) 946-952
  • 81 Gapeyeva H, Pääsuke M, Ereline J, Pintsaar A, Eller A. Isokinetic torque deficit of the knee extensor muscles after arthroscopic partial meniscectomy. Knee Surg Sports Traumatol Arthrosc 2000; 8 (5) 301-304
  • 82 Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 2008; 16 (11) 1009-1016
  • 83 Jefferson RJ, Collins JJ, Whittle MW, Radin EL, O'Connor JJ. The role of the quadriceps in controlling impulsive forces around heel strike. Proc Inst Mech Eng H 1990; 204 (1) 21-28
  • 84 Kreuz PC, Müller S, Freymann U , et al. Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation. Am J Sports Med 2011; 39 (8) 1697-1705
  • 85 Hewett TE, Myer GD, Ford KR , et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2005; 33 (4) 492-501
  • 86 Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 2006; 36 (6) 385-402
  • 87 Klein KK. Asymmetries in the pelvis and legs and their implications in knee injury. Am Correct Ther J 1970; 24 (3) 93-95
  • 88 Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 1991; 19 (5) 513-518
  • 89 Tang WC, Henderson IJ. High tibial osteotomy: long term survival analysis and patients' perspective. Knee 2005; 12 (6) 410-413
  • 90 Bauer S, Khan RJ, Ebert JR , et al. Knee joint preservation with combined neutralising High Tibial Osteotomy (HTO) and Matrix-induced Autologous Chondrocyte Implantation (MACI) in younger patients with medial knee osteoarthritis: A case series with prospective clinical and MRI follow-up over 5years. Knee 2012; 19 (4) 431-439
  • 91 Rue JP, Colton A, Zare SM , et al. Trochlear contact pressures after straight anteriorization of the tibial tuberosity. Am J Sports Med 2008; 36 (10) 1953-1959
  • 92 Beck PR, Thomas AL, Farr J, Lewis PB, Cole BJ. Trochlear contact pressures after anteromedialization of the tibial tubercle. Am J Sports Med 2005; 33 (11) 1710-1715
  • 93 Shirazi-Adl A, Mesfar W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads. Clin Biomech (Bristol, Avon) 2007; 22 (3) 344-351
  • 94 Maquet P. The biomechanics of the knee and surgical possibilities of healing osteoarthritic knee joints. Clin Orthop Relat Res 1980; (146) 102-110
  • 95 Pascual-Garrido C, Slabaugh MA, L'Heureux DR, Friel NA, Cole BJ. Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am J Sports Med 2009; 37 (Suppl. 01) 33S-41S
  • 96 Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res 2007; 463: 187-194
  • 97 Henderson IJ, Lavigne P. Periosteal autologous chondrocyte implantation for patellar chondral defect in patients with normal and abnormal patellar tracking. Knee 2006; 13 (4) 274-279
  • 98 Gigante A, Enea D, Greco F , et al. Distal realignment and patellar autologous chondrocyte implantation: mid-term results in a selected population. Knee Surg Sports Traumatol Arthrosc 2009; 17 (1) 2-10
  • 99 Sterett WI, Steadman JR, Huang MJ, Matheny LM, Briggs KK. Chondral resurfacing and high tibial osteotomy in the varus knee: survivorship analysis. Am J Sports Med 2010; 38 (7) 1420-1424
  • 100 Jakobsen RB, Engebretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 2005; 87 (10) 2232-2239