Semin Liver Dis 2012; 32(03): 201-210
DOI: 10.1055/s-0032-1323624
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Viroids and Hepatitis Delta Virus

Ricardo Flores
1   Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
,
Susana Ruiz-Ruiz
1   Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
,
Pedro Serra
1   Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
29 August 2012 (online)

Abstract

There is a subviral world, whose most prominent representatives are viroids. Despite being solely composed by a circular, highly structured RNA of ~250 to 400 nucleotides without protein-coding ability (all viruses code for one or more proteins), viroids can infect and incite specific diseases in higher plants. The RNA of human hepatitis delta virus (HDV), the smallest genome of an animal virus, displays striking similarities with viroids: It is circular, folds into a rodlike secondary structure, and replicates through a rolling-circle mechanism catalyzed by host enzymes and cis-acting ribozymes. However, HDV RNA is larger (~1700 nucleotides), encodes a protein in its antigenomic polarity (the ∂ antigen), and depends for transmission on hepatitis B virus. The presence of ribozymes in some viroids and in HDV RNA, along with their structural simplicity, makes them candidates for being molecular fossils of the RNA world that presumably preceded our extant world based on DNA and proteins.

 
  • References

  • 1 Beijerinck MW. Ueber ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblatter. Verh K Akad Wet Amsterdam 1898; 65: 3-21
  • 2 Diener TO, Raymer WB. Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. Science 1967; 158 (3799) 378-381
  • 3 Diener TO. Potato spindle tuber viroid. 8. Correlation of infectivity with a UV-absorbing component and thermal denaturation properties of the RNA. Virology 1972; 50 (2) 606-609
  • 4 Diener TO. Discovering viroids—a personal perspective. Nat Rev Microbiol 2003; 1 (1) 75-80
  • 5 Semancik JS, Weathers LG. Exocortis disease: evidence for a new species of “infectious” low molecular weight RNA in plants. Nat New Biol 1972; 237 (77) 242-244
  • 6 Flores R, Hernández C, Martínez de Alba AE, Daròs JA, Di Serio F. Viroids and viroid-host interactions. Annu Rev Phytopathol 2005; 43: 117-139
  • 7 Tsagris EM, Martínez de Alba AE, Gozmanova M, Kalantidis K. Viroids. Cell Microbiol 2008; 10 (11) 2168-2179
  • 8 Ding B. The biology of viroid-host interactions. Annu Rev Phytopathol 2009; 47: 105-131
  • 9 Sogo JM, Koller T, Diener TO. Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy. Virology 1973; 55 (1) 70-80
  • 10 Gross HJ, Domdey H, Lossow C , et al. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 1978; 273 (5659) 203-208
  • 11 Keese P, Symons RH. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A 1985; 82 (14) 4582-4586
  • 12 Symons RH. Avocado sunblotch viroid: primary sequence and proposed secondary structure. Nucleic Acids Res 1981; 9 (23) 6527-6537
  • 13 Hernández C, Flores R. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci U S A 1992; 89 (9) 3711-3715
  • 14 Hutchins CJ, Rathjen PD, Forster AC, Symons RH. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 1986; 14 (9) 3627-3640
  • 15 Rizzetto M, Canese MG, Aricò S , et al. Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut 1977; 18 (12) 997-1003
  • 16 Rizzetto M, Canese MG, Gerin JL, London WT, Sly DL, Purcell RH. Transmission of the hepatitis B virus-associated delta antigen to chimpanzees. J Infect Dis 1980; a 141 (5) 590-602
  • 17 Rizzetto M, Hoyer B, Canese MG, Shih JW, Purcell RH, Gerin JL. Delta agent: association of delta antigen with hepatitis B surface antigen and RNA in serum of delta-infected chimpanzees. Proc Natl Acad Sci U S A 1980; b 77 (10) 6124-6128
  • 18 Bonino F, Hoyer B, Shih JWK, Rizzetto M, Purcell RH, Gerin JL. Delta hepatitis agent: structural and antigenic properties of the delta-associated particle. Infect Immun 1984; 43 (3) 1000-1005
  • 19 Chen PJ, Kalpana G, Goldberg J , et al. Structure and replication of the genome of the hepatitis delta virus. Proc Natl Acad Sci U S A 1986; 83 (22) 8774-8778
  • 20 Branch AD, Robertson HD. A replication cycle for viroids and other small infectious RNA's. Science 1984; 223 (4635) 450-455
  • 21 Wang KS, Choo QL, Weiner AJ , et al. Structure, sequence and expression of the hepatitis delta (delta) viral genome. Nature 1986; 323 (6088) 508-514
  • 22 Makino S, Chang MF, Shieh CK , et al. Molecular cloning and sequencing of a human hepatitis delta (delta) virus RNA. Nature 1987; 329 (6137) 343-346
  • 23 Kuo MY, Goldberg J, Coates L, Mason W, Gerin J, Taylor J. Molecular cloning of hepatitis delta virus RNA from an infected woodchuck liver: sequence, structure, and applications. J Virol 1988; 62 (6) 1855-1861
  • 24 Gudima S, Wu SY, Chiang CM, Moraleda G, Taylor J. Origin of hepatitis δ virus mRNA. J Virol 2000; 74 (16) 7204-7210
  • 25 Casey JL, Gerin JL. Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J Virol 1995; 69 (12) 7593-7600
  • 26 Grill LK, Semancik JS. RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proc Natl Acad Sci U S A 1978; 75 (2) 896-900
  • 27 Diener TO. Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. 3. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ. Virology 1971; 43 (1) 75-89
  • 28 Spiesmacher E, Mühlbach HP, Schnölzer M, Haas B, Sänger HL. Oligomeric forms of potato spindle tuber viroid (PSTV) and of its complementary RNA are present in nuclei isolated from viroid-infected potato cells. Biosci Rep 1983; 3 (8) 767-774
  • 29 Harders J, Lukács N, Robert-Nicoud M, Jovin TM, Riesner D. Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J 1989; 8 (13) 3941-3949
  • 30 Qi Y, Ding B. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell 2003; a 15 (11) 2566-2577
  • 31 Taylor J, Mason W, Summers J , et al. Replication of human hepatitis delta virus in primary cultures of woodchuck hepatocytes. J Virol 1987; 61 (9) 2891-2895
  • 32 Macnaughton TB, Lai MM. Genomic but not antigenomic hepatitis delta virus RNA is preferentially exported from the nucleus immediately after synthesis and processing. J Virol 2002; 76 (8) 3928-3935
  • 33 Flores R, Grubb D, Elleuch A, Nohales MÁ, Delgado S, Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 2011; 8 (2) 200-206
  • 34 Branch AD, Benenfeld BJ, Robertson HD. Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proc Natl Acad Sci U S A 1988; 85 (23) 9128-9132
  • 35 Daròs JA, Marcos JF, Hernández C, Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci U S A 1994; 91 (26) 12813-12817
  • 36 Taylor JM. Chapter 3. Replication of the hepatitis delta virus RNA genome. Adv Virus Res 2009; 74: 103-121
  • 37 Tseng C-H, Lai MM. Hepatitis delta virus RNA replication. Viruses 2009; 1 (3) 818-831
  • 38 Greco-Stewart V, Pelchat M. Interaction of host cellular proteins with components of the hepatitis delta virus. Viruses 2010; 2 (1) 189-212
  • 39 Cao D, Haussecker D, Huang Y, Kay MA. Combined proteomic-RNAi screen for host factors involved in human hepatitis delta virus replication. RNA 2009; 15 (11) 1971-1979
  • 40 Yamaguchi Y, Filipovska J, Yano K , et al. Stimulation of RNA polymerase II elongation by hepatitis delta antigen. Science 2001; 293 (5527) 124-127
  • 41 Huang WH, Chen CW, Wu HL, Chen PJ. Post-translational modification of delta antigen of hepatitis D virus. Curr Top Microbiol Immunol 2006; 307: 91-112
  • 42 Navarro JA, Vera A, Flores R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 2000; 268 (1) 218-225
  • 43 Rodio ME, Delgado S, De Stradis A, Gómez MD, Flores R, Di Serio F. A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 2007; 19 (11) 3610-3626
  • 44 Navarro JA, Flores R. Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J 2000; 19 (11) 2662-2670
  • 45 Delgado S, Martínez de Alba AE, Hernández C, Flores R. A short double-stranded RNA motif of peach latent mosaic viroid contains the initiation and the self-cleavage sites of both polarity strands. J Virol 2005; 79 (20) 12934-12943
  • 46 Kolonko N, Bannach O, Aschermann K , et al. Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. Virology 2006; 347 (2) 392-404
  • 47 Haussecker D, Cao D, Huang Y, Parameswaran P, Fire AZ, Kay MA. Capped small RNAs and MOV10 in human hepatitis delta virus replication. Nat Struct Mol Biol 2008; 15 (7) 714-721
  • 48 Gudima SO, Chang J, Taylor JM. Reconstitution in cultured cells of replicating HDV RNA from pairs of less than full-length RNAs. RNA 2005; 11 (1) 90-98
  • 49 Gas ME, Hernández C, Flores R, Daròs JA. Processing of nuclear viroids in vivo: an interplay between RNA conformations. PLoS Pathog 2007; 3 (11) e182
  • 50 Hutchins CJ, Rathjen PD, Forster AC, Symons RH. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 1986; 14 (9) 3627-3640
  • 51 Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 1982; 31 (1) 147-157
  • 52 Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35 (3 Pt 2) 849-857
  • 53 Kuo MY, Sharmeen L, Dinter-Gottlieb G, Taylor J. Characterization of self-cleaving RNA sequences on the genome and antigenome of human hepatitis delta virus. J Virol 1988; 62 (12) 4439-4444
  • 54 Ferré-D'Amaré AR, Zhou K, Doudna JA. Crystal structure of a hepatitis delta virus ribozyme. Nature 1998; 395 (6702) 567-574
  • 55 Carbonell A, De la Peña M, Flores R, Gago S. Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Res 2006; 34 (19) 5613-5622
  • 56 Chadalavada DM, Cerrone-Szakal AL, Bevilacqua PC. Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA 2007; 13 (12) 2189-2201
  • 57 Daròs JA, Flores R. A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 2002; 21 (4) 749-759
  • 58 Lazinski DW, Taylor JM. Intracellular cleavage and ligation of hepatitis delta virus genomic RNA: regulation of ribozyme activity by cis-acting sequences and host factors. J Virol 1995; 69 (2) 1190-1200
  • 59 Englert M, Beier H. Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Res 2005; 33 (1) 388-399
  • 60 Englert M, Latz A, Becker D, Gimple O, Beier H, Akama K. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 2007; 89 (11) 1351-1365
  • 61 Sharmeen L, Kuo MYP, Taylor J. Self-ligating RNA sequences on the antigenome of human hepatitis delta virus. J Virol 1989; 63 (3) 1428-1430
  • 62 Reid CE, Lazinski DW. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc Natl Acad Sci U S A 2000; 97 (1) 424-429
  • 63 Branch AD, Benenfeld BJ, Baroudy BM, Wells FV, Gerin JL, Robertson HD. An ultraviolet-sensitive RNA structural element in a viroid-like domain of the hepatitis delta virus. Science 1989; 243 (4891) 649-652
  • 64 Zhong X, Leontis N, Qian S , et al. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80 (17) 8566-8581
  • 65 Zhong X, Archual AJ, Amin AA, Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 2008; 20 (1) 35-47
  • 66 Robertson HD, Manche L, Mathews MB. Paradoxical interactions between human delta hepatitis agent RNA and the cellular protein kinase PKR. J Virol 1996; 70 (8) 5611-5617
  • 67 Polson AG, Bass BL, Casey JL. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 1996; 380 (6573) 454-456
  • 68 Owens RA, Hammond RW. Viroid pathogenicity: one process, many faces. Viruses 2009; 1 (2) 298-316
  • 69 Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B. Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant Microbe Interact 2002; 15 (10) 990-999
  • 70 Qi Y, Ding B. Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell 2003; b 15 (6) 1360-1374
  • 71 Wang Y, Shibuya M, Taneda A , et al. Accumulation of potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 2011; 413 (1) 72-83
  • 72 Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136 (4) 642-655
  • 73 Papaefthimiou I, Hamilton AJ, Denti MA, Baulcombe D, Tsagris M, Tabler M. Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res 2001; 29 (11) 2395-2400
  • 74 Itaya A, Folimonov A, Matsuda Y, Nelson RS, Ding B. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. Mol Plant Microbe Interact 2001; 14 (11) 1332-1334
  • 75 Martínez de Alba AE, Flores R, Hernández C. Two chloroplastic viroids induce the accumulation of small RNAs associated with posttranscriptional gene silencing. J Virol 2002; 76 (24) 13094-13096
  • 76 Itaya A, Zhong X, Bundschuh R , et al. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 2007; 81: 2980-2994
  • 77 St-Pierre P, Hassen IF, Thompson D, Perreault JP. Characterization of the siRNAs associated with peach latent mosaic viroid infection. Virology 2009; 383 (2) 178-182
  • 78 Di Serio F, Gisel A, Navarro B , et al. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS ONE 2009; 4 (10) e7539
  • 79 Carbonell A, Martínez de Alba AE, Flores R, Gago S. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 2008; 371 (1) 44-53
  • 80 Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 2010; 84: 2477-2489
  • 81 Wang MB, Bian XY, Wu LM , et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci U S A 2004; 101 (9) 3275-3280
  • 82 Lu R, Maduro M, Li F , et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 2005; 436 (7053) 1040-1043
  • 83 Wang XH, Aliyari R, Li WX , et al. RNA interference directs innate immunity against viruses in adult drosophila. Science 2006; 312 (5772) 452-454
  • 84 Chang J, Provost P, Taylor JM. Resistance of human hepatitis delta virus RNAs to dicer activity. J Virol 2003; 77 (22) 11910-11917
  • 85 Diener TO. Circular RNAs: relics of precellular evolution?. Proc Natl Acad Sci U S A 1989; 86 (23) 9370-9374
  • 86 Gago S, Elena SF, Flores R, Sanjuán R. Extremely high mutation rate of a hammerhead viroid. Science 2009; 323 (5919) 1308
  • 87 Taylor J, Pelchat M. Origin of hepatitis delta virus. Future Microbiol 2010; 5 (3) 393-402
  • 88 Robertson HD. How did replicating and coding RNAs first get together?. Science 1996; 274 (5284) 66-67
  • 89 Webb C-HT, Riccitelli NJ, Ruminski DJ, Lupták A. Widespread occurrence of self-cleaving ribozymes. Science 2009; 326 (5955) 953
  • 90 de la Peña M, García-Robles I. Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 2010; a 16 (10) 1943-1950
  • 91 de la Peña M, García-Robles I. Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep 2010; b 11 (9) 711-716
  • 92 Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 2012; 40 (7) 3131-3142
  • 93 Taylor JM. Replication of human hepatitis δ virus: influence of studies on subviral plant pathogens. Adv Virus Res 1999; 54: 45-60