Aktuelle Rheumatologie 2012; 37(05): 295-298
DOI: 10.1055/s-0032-1323682
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Biomarker der Idiopathischen Retroperitonealen Fibrose und anderer fibrosierender Erkrankungen in der Rheumatologie

Biomarkers of Idiopathic Retroperitoneal Fibrosis and Other Fibrotic Disease in Rheumatology
F. Kollert
1   Rheumatologie und Klinische Immunologie, Universität Freiburg, Freiburg
,
K. Warnatz
1   Rheumatologie und Klinische Immunologie, Universität Freiburg, Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
27 August 2012 (online)

Zusammenfassung

Bei einigen rheumatologischen Erkrankungen wird die Prognose wesentlich durch fibrosierende Organmanifestationen bestimmt. Zur Vermeidung invasiver und teurer Verlaufsuntersuchungen dieser Manifestationen ist es notwendig, Serummarker zu etablieren, die eine Aussage über Vorliegen, Aktivität und damit auch die Verlaufsbeurteilung fibrotischer Prozesse erlauben. Insbesondere für die Systemische Sklerose gibt es Fortschritte hinsichtlich der Identifizierung neuer Biomarker. So stehen aktuell u. a. die Serumkonzentration von CCL18, Osteopontin und die Fibrozyten-Population im peripheren Blut auf wissenschaftlichem Prüfstand. Auch für die Idiopathische Retroperitoneale Fibrose (Morbus Ormond), eine meist im Retroperitoneum lokalisierte fibro-inflammatorische Erkrankung, gibt es aktuell Hinweise für potenzielle Serumparameter, die möglicherweise eine Aussage über die Krankheitsaktivität und das Therapieansprechen erlauben. Im Folgenden fassen wir neueste Erkenntnisse über einige potenzielle Biomarker zusammen und diskutieren die bestehende Evidenz für die verschiedenen fibrosierenden Erkrankungen in der Rheumatologie.

Abstract

The prognosis of some rheumatic diseases is mainly determined by fibrosis of the affected organs. In addition to the at least partially invasive and costly examinations for follow-up, there is a need for serum-derived biomarkers, which allow an examination of the presence, activity and follow-up of fibrotic manifestations. In particular for systemic sclerosis there are several new studies supporting a potential role of the serum CCL18 and osteopontin levels as well as circulating fibrocytes in the peripheral blood. Also for the idiopathic retroperitoneal fibrosis (IRF, Ormond’s disease), a fibro-inflammatory disease involving the retroperitoneum, there is recent evidence for potential serological biomarkers, which reflect disease activity and treatment response. In this article we review new candidates and discuss the evidence of their use for IRF and other fibrotic disease in rheumatology.

 
  • Literatur

  • 1 Tyndall AJ, Bannert B, Vonk M et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Annals of the Rheumatic Diseases 2010; 69: 1809-1815
  • 2 Froidevaux-Janin S, Dudler J, Nicod LP et al. Interstitial lung disease in rheumatoid arthritis. Rev Med Suisse 2011; 7: 2272-2277
  • 3 Prasse A, Müller-Quernheim J. Sarkoidose. Internist 2009; 50: 581-590
  • 4 Parambil JG, Myers JL, Lindell RM et al. Interstitial lung disease in primary Sjögren syndrome. Chest 2006; 130: 1489-1495
  • 5 Prasse A. A Vicious Circle of Alveolar Macrophages and Fibroblasts Perpetuates Pulmonary Fibrosis via CCL18. American Journal of Respiratory and Critical Care Medicine 2006; 173: 781-792
  • 6 Mitchinson MJ. Chronic periaortitis and periarteritis. Histopathology 1984; 8: 589-600
  • 7 Pipitone N, Salvarani C, Peter HH. Chronic periaortitis. Internist 2010; 51: 45-52
  • 8 Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med 2012; 366: 539-551
  • 9 Zen Y, Onodera M, Inoue D et al. Retroperitoneal fibrosis: a clinicopathologic study with respect to immunoglobulin G4. Am J Surg Pathol 2009; 33: 1833-1839
  • 10 Umehara H, Okazaki K, Masaki Y et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol 2012; 22: 21-30
  • 11 Binder M, Uhl M, Wiech T et al. Cyclophosphamide is a highly effective and safe induction therapy in chronic periaortitis: a long-term follow-up of 35 patients with chronic periaortitis. Annals of the Rheumatic Diseases Published Online First: 22 August 2011
  • 12 Vaglio A, Strehl JD, Manger B et al. IgG4 immune response in Churg-Strauss syndrome. Annals of the Rheumatic Diseases 2012; 71: 390-393
  • 13 Punnonen J, Aversa G, Cocks BG et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 1993; 90: 3730-3734
  • 14 Kodelja V, Müller C, Politz O et al. Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern. J Immunol 1998; 160: 1411-1418
  • 15 Schutyser E, Richmond A, Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. Journal of Leukocyte Biology 2005; 78: 14-26
  • 16 Hieshima K, Imai T, Baba M et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol 1997; 159: 1140-1149
  • 17 Atamas SP. Pulmonary and Activation-Regulated Chemokine Stimulates Collagen Production in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology 2003; 29: 743-749
  • 18 Kodera M, Hasegawa M, Komura K et al. Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum 2005; 52: 2889-2896
  • 19 Prasse A, Pechkovsky DV, Toews GB et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum 2007; 56: 1685-1693
  • 20 Prasse A, Probst C, Bargagli E et al. Serum CC-Chemokine Ligand 18 Concentration Predicts Outcome in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 2009; 179: 717-723
  • 21 Tiev KP, Hua-Huy T, Kettaneh A et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. European Respiratory Journal 2011; 38: 1355-1360
  • 22 Kollert F, Binder M, Probst C et al. CCL18 – Potential Biomarker of Fibroinflammatory Activity in Chronic Periaortitis. The Journal of Rheumatology Published Online First: 15 May 2012
  • 23 O’Regan A, Berman JS. Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 2000; 81: 373-390
  • 24 Kurokawa M, Konno S, Takahashi A et al. Regulatory role of DC-derived osteopontin in systemic allergen sensitization. Eur J Immunol 2009; 39: 3323-3330
  • 25 Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000; 11: 279-303
  • 26 Singh K, DeVouge MW, Mukherjee BB. Physiological properties and differential glycosylation of phosphorylated and nonphosphorylated forms of osteopontin secreted by normal rat kidney cells. J Biol Chem 1990; 265: 18696-18701
  • 27 Kaartinen MT, Pirhonen A, Linnala-Kankkunen A et al. Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem 1999; 274: 1729-1735
  • 28 Denhardt DT, Noda M, O’Regan AW et al. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055-1061
  • 29 Karadag F, Gulen ST, Karul AB et al. Osteopontin as a marker of weight loss in lung cancer. Scand J Clin Lab Invest 2011; 71: 690-694
  • 30 Zhao B, Sun T, Meng F et al. Osteopontin as a potential biomarker of proliferation and invasiveness for lung cancer. J Cancer Res Clin Oncol 2011; 137: 1061-1070
  • 31 Weber GF, Lett GS, Haubein NC. Osteopontin is a marker for cancer aggressiveness and patient survival. Br J Cancer 2010; 103: 861-869
  • 32 Paleari L, Rotolo N, Imperatori A et al. Osteopontin is not a specific marker in malignant pleural mesothelioma. Int J Biol Markers 2009; 24: 112-117
  • 33 Atai NA, Bansal M, Lo C et al. Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 2011; 132: 39-48
  • 34 Shojaei F, Scott N, Kang X et al. Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer. J Exp Clin Cancer Res 2012; 31: 26
  • 35 Goparaju CMV, Pass HI, Blasberg JD et al. Functional heterogeneity of osteopontin isoforms in non-small cell lung cancer. J Thorac Oncol 2010; 5: 1516-1523
  • 36 Mountzios G, Ramfidis V, Terpos E et al. Prognostic significance of bone markers in patients with lung cancer metastatic to the skeleton: a review of published data. Clin Lung Cancer 2011; 12: 341-349
  • 37 Berman JS, Serlin D, Li X et al. Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice. Am J Physiol Lung Cell Mol Physiol 2004; 286: L1311-L1318
  • 38 Wu M, Schneider DJ, Mayes MD et al. Osteopontin in Systemic Sclerosis and Its Role in Dermal Fibrosis. J Invest Dermatol Published Online First: 8 March 2012
  • 39 Pardo A, Gibson K, Cisneros J et al. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis. Plos Med 2005; 2: e251
  • 40 Lorenzen JM, Kramer R, Meier M et al. Osteopontin in the development of systemic sclerosis – relation to disease activity and organ manifestation. Rheumatology 2010; 49: 1989-1991
  • 41 Barizzone N, Marchini M, Cappiello F et al. Association of osteopontin regulatory polymorphisms with systemic sclerosis. Hum Immunol 2011; 72: 930-934
  • 42 Prasse A, Stahl M, Schulz G et al. Essential role of osteopontin in smoking-related interstitial lung diseases. Am J Pathol 2009; 174: 1683-1691
  • 43 Uibu T, Oksa P, Auvinen A et al. Asbestos exposure as a risk factor for retroperitoneal fibrosis. Lancet 2004; 363: 1422-1426
  • 44 Bucala R, Spiegel LA, Chesney J et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1: 71-81
  • 45 Mathai SK, Gulati M, Peng X et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest 2010; 90: 812-823
  • 46 Mehrad B, Burdick MD, Zisman DA et al. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochemical and Biophysical Research Communications 2007; 353: 104-108
  • 47 Moeller A, Gilpin SE, Ask K et al. Circulating Fibrocytes Are an Indicator of Poor Prognosis in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine 2009; 179: 588-594
  • 48 Sopel M, Falkenham A, Oxner A et al. Fibroblast progenitor cells are recruited into the myocardium prior to the development of myocardial fibrosis. Int J Exp Pathol 2012; 93: 115-124
  • 49 Hashimoto N. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113: 243-252
  • 50 Schmidt M, Sun G, Stacey MA et al. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003; 171: 380-389