Horm Metab Res 2013; 45(01): 15-21
DOI: 10.1055/s-0032-1323705
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Epitestosterone and Testosterone have Similar Nonclassical Actions on Membrane of Sertoli Cells in Whole Seminiferous Tubules

A. L. de Castro
1   Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
,
F. C. Cavalari
1   Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
,
M. V. Diello
1   Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
,
B. M. Fracasso
1   Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
,
E. S. Loss
1   Laboratório de Endocrinologia Experimental e Eletrofisiologia Endócrina, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
› Author Affiliations
Further Information

Publication History

received 28 February 2012

accepted after second revision 26 July 2012

Publication Date:
06 September 2012 (online)

Abstract

Epitestosterone is the 17α-epimer of testosterone. This steroid possesses antiandrogenic activities. The mechanism of action of epitestosterone has not been elucidated. The aim of this study was to investigate the nonclassical effect of epitestosterone on the membrane of Sertoli cells in proliferative phase (rats aged 15 days) and in nonproliferative phase (rats aged 21 and 35 days). The membrane potential of Sertoli cells was recorded using a standard single microelectrode technique. Epitestosterone (0.5, 1, and 2 μM) or testosterone (1 μM) was administered alone and after infusion with flutamide (1 μM), verapamil (100 μM), or U-73122 (2 μM). The testes of rats aged 12–15 days were preincubated with 45Ca2+ with or without flutamide (1 μM) and incubated with epitestosterone (1 μM) or testosterone (1 μM). Epitestosterone and testosterone produced a depolarization in the membrane potential and increased the membrane input resistance on Sertoli cells from rats of all 3 ages. The effect of epitestosterone did not change after perfusion with flutamide. Epitestosterone increased 45Ca2+ uptake within 5 min and this effect was not inhibited by flutamide. The absence of an effect by flutamide suggests that epitestosterone acts independently of the intracellular androgen receptor. The depolarizing effect was inhibited by verapamil, a voltage-dependent calcium channel blocker, and by U-73122, a phospholipase C inhibitor. These results indicate that epitestosterone acts on the membrane via a nonclassical signaling pathway; the effect was similar to the testosterone action on membrane of Sertoli cells in whole seminiferous tubules from rat testes.

 
  • References

  • 1 Clark LC, Kochakian CD. The in vitro metabolism of testosterone to 4-androstenedione-3, 17 cis-testosterone and other steroids by rabbit liver slices. J Biol Chem 1947; 170: 22-23
  • 2 Starka L. Epitestosterone. J Steroid Biochem Mol Biol 2003; 87: 27-34
  • 3 Weusten JJ, Legemaat G, van der Wouw MP, Smals AG, Kloppenborg PW, Benraad T. The mechanism of the synthesis of 16-androstenes in human testicular homogenates. J Steroid Biochem 1989; 32: 689-694
  • 4 Starka L, Breuer H. Vergleichende Untersuchungen über den Stoffwechsel von 17-Epitestosteron in Testisgewebe der Ratte, des Kaninchens und des Stieres. Z Physiol Chem 1967; 348: 808-814
  • 5 Wilson H, Lipsett MB. Metabolism of epitestosterone in man. J Clin Endocrinol Metab 1966; 26: 902-914
  • 6 Nuck BA, Lucky AW. Epitestosterone: A potential new antiandrogen. J Investig Dermatol 1987; 89: 209-211
  • 7 Verhoeven G, Heyns W, De Moor P. Testosterone receptors in the prostate and other tissues. Vitam Horm 1976; 33: 265-281
  • 8 Starka L, Bičìkovà M, Hampl R. Epitestosterone – an endogenous antiandrogen?. J Steroid Biochem 1989; 33: 1019-1021
  • 9 Broulik PD, Starka L. Effect of Antiandrogens Casodex and Epitestosterone on Bone Composition in Mice. Bone 1997; 20: 473-475
  • 10 Maucher A, von Angerer E, Hampl R, Starka L. The activity of epitestosterone in hormone dependent prostate tumour models. Endocr Regul 1994; 28: 23-29
  • 11 Sharpe RM, McKinnell C, Kivlin C, Jane S. Fisher. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 2003; 125: 769-784
  • 12 Orth JM. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 1982; 203: 485-492
  • 13 Griswold MD, Solari A, Tung PS, Fritz IB. Stimulation by follicle-stimulating hormone of DNA synthesis and of mitosis in cultured Sertoli cells prepared from testes of immature rats. Mol Cell Endocrinol 1977; 7: 151-165
  • 14 Walker WH. Nongenomic actions of androgens in Sertoli cells. Curr Top Dev Biol 2003; 56: 25-53
  • 15 Loss ES, Jacobsen M, Costa ZSM, Jacobus AP, Borelli F, Wassermann GF. Testosterone modulates K+ ATP channels in Sertoli Cell membrane via the PLC-PIP2 pathway. Horm Metab Res 2004; 36: 519-525
  • 16 Wassermann GF, Loss ES. Testosterone Action on the Sertoli Cell Membrane: A KIR6.x Channel Related Effect. Curr Pharm Des 2004; 10: 2649-2656
  • 17 Loss ES, Jacobus AP, Wassermann GF. Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: Calcium inflow and electrophysiological changes. Life Sci 2011; 89: 577-583
  • 18 Von Ledebur EICF, Almeida JP, Loss ES, Wassermann GF. Rapid effect of testosterone on rat Sertoli cell membrane potential, Relationship with K+ ATP channels. Horm Metab Res 2002; 34: 550-555
  • 19 Leite L, Luchi R, Von Ledebur EICF, Loss ES, Wassermann GF. Testosterone induces immediate membrane depolarization and stimulates 45Ca2+ uptake in Sertoli cells from rats of different maturation stages. Med Sci Res 1999; 27: 25-28
  • 20 Batra S, Sjogren C. Effect of estrogen treatment on calcium uptake by the rat uterine smoth muscle. Life Sci 1983; 32: 315-319
  • 21 Hess RA, França LR. Structure of the Sertoli Cell. In: Skinner MK, Griswold MD. (eds.). The Sertoli cell Biology. San Diego, California: Elsevier Academic Press; 2004: 19-40
  • 22 Eusebi F, Ziparo E, Fratamico G, Russo MA, Stefanini M. Intercellular communication in rat seminiferous tubules. Dev Biol 1983; 100: 249-255
  • 23 Wassermann GF, Monti Bloch L, Grillo ML, Silva FRMB, Loss ES, McConnell LL. Electrophysiological changes of Sertoli cells produced by the acute administration of amino acid and FSH. Horm Metab Res 1992; 24: 326-328
  • 24 Perusquía M, Hernández R, Kubli-Garfias C. Epitestosterone induces testosterone-like uterine relaxation [abstract]. 10th International Congress of Endocrinology 1996; 549-578
  • 25 Perusquía M, Navarrete E. Evidence that 17alpha-estradiol is biologically active in the uterine tissue: Antiuterotonic and antiuterotrophic action. Reprod Biol Endocrinol 2005; 3: 30
  • 26 Cavalari FC, De Castro AL, Fracasso BM, Loss ES. Non-classic androgen actions in Sertoli cell membrane in whole seminiferous tubules: Effects of nandrolone decanoate and catechin. Steroids 2012; 77: 118-125
  • 27 Michels G, Hoppe UC. Rapid actions of androgens. Front Neuroendocrinol 2008; 29: 182-198
  • 28 Cheng J, Watkins SC, Walker WH. Testosterone activates mitogen-activated protein kinase via Src kinase and the epidermal growth factor receptor in Sertoli cells. Endocrinology 2007; 148: 2066-2074
  • 29 Lyng FM, Jones GR, Rommerts FF. Rapid androgen actions on calcium signaling in rat Sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol Reprod 2000; 63: 736-747
  • 30 Gorczynska E, Handelsman DJ. Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells. Endocrinology 1995; 136: 2052-2059
  • 31 Machelon V, Nome F, Tesarik J. Nongenomic effects of androstenedione on human granulosa luteinizing cells. J Clin Endocrinol Metab 1998; 83: 263-269
  • 32 Estrada M, Espinosa A, Muller M, Jaimovich E. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 2003; 144: 3586-3597
  • 33 Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem 1994; 269: 7217-7223