Arzneimittelforschung, Inhaltsverzeichnis Arzneimittelforschung 2012; 62(S 01): S4-S5DOI: 10.1055/s-0032-1324900 Symposium der Paul-Martini-Stiftung Georg Thieme Verlag KG Stuttgart · New York Glycoengineering of Therapeutic Antibodies C. Klein 1 Expert Scientist, Roche Glycart AG, Schlieren/Switzerland › Institutsangaben Artikel empfehlen Abstract Volltext Referenzen References 1 Wang SY, Weiner G. Complement and cellular cytotoxicity in antibody therapy of cancer. Expert Opin Biol Ther 2008; 8: 759-768 2 Cartron G, Trappe RU, Solal-Celigny P et al. Interindividual variability of response to rituximab: from biological origins to individualized therapies. Clin Cancer Res 2011; 17: 19-30 3 Cartron G. FCGR3A polymorphism story: a new piece of the puzzle. Leuk Lymphoma 2009; 50: 1401-1402 4 DallʼOzzo S, Tartas S, Paintaud G et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664-4669 5 Cartron G, Watier H, Golay J et al. From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104: 2635-2642 6 Cartron G, Dacheux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99: 754-758 7 Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10: 317-327 8 Ferrara C, Grau S, Jager C et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 2011; 108: 12669-12674 9 Ferrara C, Brunker P, Suter T et al. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 2006; 93: 851-861 10 Ferrara C, Stuart F, Sondermann P et al. The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 2006; 281: 5032-5036 11 Schuster M, Umana P, Ferrara C et al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 2005; 65: 7934-7341 12 Ashraf SQ, Umana P, Mossner E et al. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis. Br J Cancer 2009; 101: 1758-1768 13 Umana P, Jean-Mairet J, Moudry R et al. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 1999; 17: 176-180 14 Yamane-Ohnuki N, Satoh M. Production of therapeutic antibodies with controlled fucosylation. MAbs 2009; 1: 230-236 15 Mori K, Iida S, Yamane-Ohnuki N et al. Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology 2007; 55: 109-114 16 Honeychurch J, Alduaij W, Azizyan M et al. Antibody-induced non-apoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species dependent pathway. Blood 2012; 17 Jak M, van Bochove GG, Reits EA et al. CD40 stimulation sensitizes CLL cells to lysosomal cell death induction by type II anti-CD20 mAb GA101. Blood 2011; 118: 5178-5188 18 Niederfellner G, Lammens A, Mundigl O et al. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 2011; 118: 358-367 19 Alduaij W, Ivanov A, Honeychurch J et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 2011; 117: 4519-4529 20 Bologna L, Gotti E, Manganini M et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol 2011; 186: 3762-3769 21 Dalle S, Reslan L, Besseyre de Horts T et al. Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 antibody GA101. Mol Cancer Ther 2011; 10: 178-185 22 Patz M, Isaeva P, Forcob N et al. Comparison of the in vitro effects of the anti-CD20 antibodies rituximab and GA101 on chronic lymphocytic leukaemia cells. Br J Haematol 2011; 152: 295-306 23 Pievani A, Belussi C, Klein C et al. Enhanced killing of human B-cell lymphoma targets by combined use of cytokine-induced killer cell (CIK) cultures and anti-CD20 antibodies. Blood 2011; 117: 510-518 24 Mossner E, Brunker P, Moser S et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115: 4393-4402 25 Paz-Ares LG, Gomez-Roca C, Delord JP et al. Phase I pharmacokinetic and pharmacodynamic dose-escalation study of RG7160 (GA201), the first glycoengineered monoclonal antibody against the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol 2011; 29: 3783-3790