Neuroradiologie Scan 2013; 03(04): 285-298
DOI: 10.1055/s-0032-1326504
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Kraniospinale Anomalien und neurologische Komplikationen bei Osteogenesis imperfecta: Bildgebung im Überblick[1]

Craniospinal abnormalities and neurologic complications of Osteogenesis imperfecta: imaging overview
Nader Khandanpour
,
Daniel J.A. Connolly
,
Ashok Raghavan
,
Paul D. Griffiths
,
Nigel Hoggard
Further Information

Publication History

Publication Date:
23 September 2013 (online)

Zusammenfassung

Die Osteogenesis imperfecta ist eine seltene Erbkrankheit mit fortschreitender Knochendeformierung, die pathophysiologisch hauptsächlich auf Störungen der Biosynthese des Kollagens vom Typ I zurückzuführen ist. Außerdem kann eine Reihe assoziierter neurologischer Anomalien auftreten: Üblicherweise ist das Zentralnervensystem beteiligt, weil die Knochenerweichung an der Schädelbasis zu einer Verschiebung der oberen Halswirbelsäule und des Dens axis in die Schädelbasis führt. Die Verschiebung der Wirbelsäule nach oben kann eine Kompression des Hirnstamms, mechanisches Impingement des Spinalkanals mit eingeschränktem Liquorfluss und Impingement der Hirnnerven verursachen. Bei einer direkten Beteiligung neurovaskulärer Strukturen können A.-carotis-Sinus-cavernosus-Fisteln, Dissektion der Halsschlagader und Hirnaneurysmen vorkommen. Häufig ist bei einer Osteogenesis imperfecta auch das Hirnparenchym betroffen; dies kann zu Großhirnatrophie, generalisiertem Hydrozephalus und Hypoplasien des Kleinhirns führen. Die Merkmale dieser Erkrankung in der Bildgebung sind so vielfältig wie die klinischen Manifestationen und hängen vom Schweregrad der Erkrankung ab. Schwere Formen, die mit multiplen Knochenbrüchen und zunehmenden neurologischen Störungen einhergehen, können zum perinatalen Kindstod führen, während leichtere, asymptomatische Formen nur eine etwas verkürzte Lebensdauer zur Folge haben. Der wichtigste Fortschritt in der Behandlung der Osteogenesis imperfecta war die Einführung der Bisphosphonattherapie, mit der die Knochenresorption bei Patienten verlangsamt wird, die unter einer mittelgradigen bis schweren Form der Erkrankung (Typ III oder IV) leiden. Bei einigen Patienten kann ein neurochirurgischer Eingriff zur Korrektur einer schweren basilären Invagination durch den Dens axis erforderlich sein.

Abstract

Osteogenesis imperfecta is a rare genetic disorder that leads to progressive skeletal deformities due to deficits in type I collagen, the main pathophysiologic effect of the disease. In addition, it may lead to a wide range of associated neurologic abnormalities: The central nervous system is usually involved because of softening of bone at the base of the skull, with resultant upward migration of the upper cervical spine and odontoid process into the skull base. Upward migration of the spine may cause compression of the brainstem, mechanical impingement of the spinal canal with restriction of cerebrospinal fluid circulation, and impingement of the cranial nerves. Osteogenesis imperfecta also may directly involve neurovascular structures, leading to cavernous fistulas of the carotid artery, dissection of the cervical arteries, and cerebral aneurysms. The brain parenchyma is frequently affected by the disease, with manifestations including cerebral atrophy, communicating hydrocephalus, and cerebellar hypoplasia. The imaging features of the disorder vary as widely as its clinical manifestations, depending on the severity of disease. Severe forms accompanied by debilitating skeletal fractures and progressive neurologic impairments may lead to perinatal death, whereas milder asymptomatic forms might cause only a modest reduction in life span. The most important advance in medical therapy for osteogenesis imperfecta has been the introduction of bisphosphonate therapy to slow the resorption of bone in patients with moderate to severe forms of the disease (ie, type III or IV). In some patients, neurosurgery may be necessary to correct the effects of severe basilar invagination by the odontoid process.

1 © 2012 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2012; 32: 2101 – 2112. Online published in 10.1148/rg.327125716. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Cole WG. Advances in osteogenesis imperfecta. Clin Orthop Relat Res 2002; 401: 6-16
  • 2 Cole WG. The molecular pathology of osteogenesis imperfecta. Clin Orthop Relat Res 1997; 343: 235-248
  • 3 Brusin JH. Osteogenesis imperfecta. Radiol Technol 2008; 79: 535-548
  • 4 Glorieux FH. Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 2008; 22: 85-100
  • 5 Eddeine HS, Dafer RM, Schneck MJ et al. Bilateral subdural hematomas in an adult with osteogenesis imperfecta. J Stroke Cerebrovasc Dis 2009; 18: 313-315
  • 6 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363: 1377-1385
  • 7 Van Dijk FS, Pals G, Van Rijn RR et al. Classification of osteogenesis imperfecta revisited. Eur J Med Genet 2010; 53: 1-5
  • 8 Paterson CR, Ogston SA, Henry RM. Life expectancy in osteogenesis imperfecta. BMJ 1996; 312: 351
  • 9 Van Dijk FS, Cobben JM, Kariminejad A et al. Osteogenesis imperfecta: a review with clinical examples. Mol Syndromol 2011; 2: 1-20
  • 10 Steiner RD, Pepin MG, Byers PH. Osteogenesis imperfecta [article online]. In: et al. Pagon RA, Bird TD, Dolan CR, eds. GeneReviews. Seattle, Wash: University of Washington; 28.01.2005. Im Internet: http://www.ncbi.nlm.nih.gov/books/NBK1295
  • 11 Glass RB, Fernbach SK, Norton KI et al. The infant skull: a vault of information. RadioGraphics 2004; 24 : 507-522
  • 12 Persing JA. Management considerations in the treatment of craniosynostosis. Plast Reconstr Surg 2008; 121 : 1-11
  • 13 Waltimo-Sirén J, Kolkka M, Pynnönen S et al. Craniofacial features in osteogenesis imperfecta: a cephalometric study. Am J Med Genet A 2005; 133A : 142-150
  • 14 Hathaway WE, Solomons CC, Ott JE. Platelet function and pyrophosphates in osteogenesis imperfecta. Blood 1972; 39: 500-509
  • 15 Albayram S, Kizilkilic O, Yilmaz H et al. Abnormalities in the cerebral arterial system in osteogenesis imperfecta. AJNR Am J Neuroradiol 2003; 24: 748-750
  • 16 Okamura T, Yamamoto M, Ohta K et al. A case of ruptured cerebral aneurysm associated with fenestrated vertebral artery in osteogenesis imperfecta [in Japanese]. No Shinkei Geka 1995; 23: 451-455
  • 17 Emery SC, Karpinski NC, Hansen L et al. Abnormalities in central nervous system development in osteogenesis imperfecta type II. Pediatr Dev Pathol 1999; 2: 124-130
  • 18 Sasaki-Adams D, Kulkarni A, Rutka J et al. Neurosurgical implications of osteogenesis imperfecta in children: report of 4 cases. J Neurosurg Pediatr 2008; 1: 229-236
  • 19 Brooks ML, Gall C, Wang AM et al. Osteogenesis imperfecta associated with basilar impression and cerebral atrophy: a case report. Comput Med Imaging Graph 1989; 13: 363-367
  • 20 Charnas LR, Marini JC. Communicating hydrocephalus, basilar invagination, and other neurologic features in osteogenesis imperfecta. Neurology 1993; 43: 2603-2608
  • 21 ter Berg JW, Goadsby PJ. Significance of atypical presentation of symptomatic SUNCT: a case report. J Neurol Neurosurg Psychiatry 2001; 70: 244-246
  • 22 Hayes M, Parker G, Ell J et al. Basilar impression complicating osteogenesis imperfecta type IV: the clinical and neuroradiological findings in four cases. J Neurol Neurosurg Psychiatry 1999; 66: 357-364
  • 23 Jensen BL, Lund AM. Osteogenesis imperfecta: clinical, cephalometric, and biochemical investigations of OI types I, III, and IV. J Craniofac Genet Dev Biol 1997; 17: 121-132
  • 24 Robinson LP, Worthen NJ, Lachman RS et al. Prenatal diagnosis of osteogenesis imperfecta type III. Prenat Diagn 1987; 7: 7-15
  • 25 Zhou LJ, Khong PL, Wong KY et al. A case of cerebellar hypoplasia in a Chinese infant with osteogenesis imperfecta. Hong Kong Med J 2004; 10: 211-213
  • 26 Cronin CG, Lohan DG, Mhuircheartigh JN et al. CT evaluation of Chamberlain’s, McGregor’s, and McRae’s skull-base lines. Clin Radiol 2009; 64: 64-69
  • 27 McAllion SJ, Paterson CR. Causes of death in osteogenesis imperfecta. J Clin Pathol 1996; 49: 627-630
  • 28 Menezes AH. Osteogenesis imperfecta. J Neurosurg 2006; 105: 359 , discussion 359–360
  • 29 Ibrahim AG, Crockard HA. Basilar impression and osteogenesis imperfecta: a 21-year retrospective review of outcomes in 20 patients. J Neurosurg Spine 2007; 7: 594-600
  • 30 Verra WC, Pruijs HJ, Beek EJ et al. Prevalence of vertebral pars defects (spondylolysis) in a population with osteogenesis imperfecta. Spine (Phila Pa 1976) 2009; 34: 1399-1401
  • 31 Ivo R, Fuerderer S, Eysel P. Spondylolisthesis caused by extreme pedicle elongation in osteogenesis imperfecta. Eur Spine J 2007; 16: 1636-1640
  • 32 Basel D, Steiner RD. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med 2009; 11: 375-385
  • 33 Zeitlin L, Fassier F, Glorieux FH. Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop B 2003; 12: 77-87