Klin Padiatr 2012; 224(06): 359-365
DOI: 10.1055/s-0032-1327606
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Molecular Genetic Analysis of Bilateral Ovarian Germ Cell Tumors

Molekulargenetische Analyse von bilateralen Keimzelltumoren des Ovars
E. Hennes
1   Clinic of Pediatric Oncology, Hematology and Immunology, Heinrich-­Heine-University, Düsseldorf, Germany
,
S. Zahn
1   Clinic of Pediatric Oncology, Hematology and Immunology, Heinrich-­Heine-University, Düsseldorf, Germany
,
L. F. Lopes
1   Clinic of Pediatric Oncology, Hematology and Immunology, Heinrich-­Heine-University, Düsseldorf, Germany
2   Hospital do Cancer Infantil de Barretos, Pediatric Hematology and ­Oncology, Barretos, Brazil
,
S. Schönberger
1   Clinic of Pediatric Oncology, Hematology and Immunology, Heinrich-­Heine-University, Düsseldorf, Germany
3   Pediatric Hematology and Oncology, University of Bonn, Bonn, Germany
,
I. Leuschner
4   Institute of Pathology, German Pediatric Tumor Registry, Kiel, Germany
,
U. Göbel
5   Heinrich-Heine-Universität Düsseldorf
,
G. Calaminus
6   Pediatric Hematology and Oncology, University Münster, Münster, Germany
,
D. T. Schneider
7   Klinikum Dortmund gGmbH, Klinik für Kinder- und Jugendmedizin, ­Dortmund, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
09 November 2012 (online)

Abstract

Background:

Ovarian germ cell tumors (oGCTs) are rare and highly heterogeneous with regard to their clinical and histologic appearance. The risk of tumor development is higher in children with aberrant sexual differentiation. Development of gonadoblastomas is seen in young women with 46,XY gonadal dysgenesis. At least 50 % of gonadoblastomas may develop into malignant oGCTs, mostly dysgerminomas. In this study, we evaluated bilateral oGCTs in clinically inapparent patients for sex chromosomal aberrations.

Patients and methods:

We analyzed tumor samples of 15 patients with synchronous bilateral oGCTs enrolled onto the consecutive MAKEI trials for non-testicular GCTs. Paraffin embedded samples from the Kiel German Childhood Tumor Registry were evaluated for the presence of Y-chromosomal sequences. Molecular genetic techniques included comparative genomic hybridization, polymerase chain reaction, and fluorescence in situ hybridization.

Results:

Among 15 patients with bilateral oGCTs, Y-chromosomal DNA sequences were detected in 6 tumors. Both mature teratomas were negative for Y-chromosomal DNA. Thus, 5 of 12 malignant oGCTs and 1 immature teratoma (with elevated AFP) showed Y-chromosomal material. A 45(X,0) karyotype could not be demonstrated.

Conclusions:

These investigations provide additional insight into the development of oGCTs: mature teratomas, which develop from postmeiotic germ cells, are not associated with gonadal dysgenesis. Bilateral immature teratomas, dysgerminomas and mixed malignant oGCTs may frequently show Y-chromosomal DNA, indicating underlying but clinically inapparent gonadal dysgenesis. Thus, the presence of aberrant Y-chromosomal sequences appears to be involved in tumor development in about half of these patients.

Zusammenfassung

Hintergrund:

Keimzelltumoren (KZT) des Ovars bieten ein sehr heterogenes klinisches und histologisches Bild. Eine besondere Patientengruppe stellen Mädchen mit konstitutionellen Aberrationen der Geschlechtschromosomen und der sexuellen Entwicklung dar. Junge Frauen mit einer 46,XY gonadalen Dysgenesie zeigen ein gehäuftes Auftreten von Gonadoblastomen, aus denen in 50% der Fälle maligne KZT, meist Dysgerminome, entstehen. In dieser Studie werden Tumorproben bilateraler ovarialer KZT auf Y-chromosomale DNA Sequenzen untersucht.

Patienten und Methoden:

Es wurden Tumorproben von 15 phänotypisch unauffälligen Pa­tientinnen mit bilateralen Keimzelltumoren des Ovars untersucht. Die Patienten sind Studienpatientinnen der konsekutiven MAKEI Therapieoptimierungsstudien. Die molekular­genetischen Analysen umfassten die komparative genomische Hybridisierung, Polymerasekettenreaktion und Fluoreszenz in situ Hybridisierung.

Ergebnisse:

Bei 6 der 15 Tumoren bzw. 5 von 12 Tumoren mit maligner Histologie und einem immaturen Teratom (mit erhöhtem AFP) wurde Y-chromosomale DNA nachgewiesen. Beide maturen Teratome waren negativ.

Schlussfolgerung:

Die hier vorgestellten molekulargenetischen Untersuchungen liefern weitere Einblicke in die Entstehung von ovarialen KZT. Mature Teratome, die sich von postmeio­tischen Keimzellen ableiten, scheinen nicht mit einer gonadalen Dysgenesie assoziiert. Bei der Hälfte der Patientinnen mit bilateralen immaturen Teratomen oder malignen KZT sind molekulargenetisch Hinweise auf eine zugrunde liegende, klinisch inapparente gonadale Dysge­nesie erkennbar.

 
  • References

  • 1 Bussey KJ, Lawce HJ, Olson SB et al. Chromosome abnormalities of eighty-one pediatric germ cell tumors: sex-, age-, site-, and histopathology-related differences-a Children’s Cancer Group study. Genes ChromosomesCancer 1999; 25: 134-146
  • 2 Cheng L, Roth LM, Zhang S et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer 2011; 117: 2096-2103
  • 3 Cools M, Stoop H, Kersemaekers AM et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab 2006; 91: 2404-2413
  • 4 Göbel U, Schneider DT, Teske C et al. Brain metastases in children and adolescents with extracranial germ cell tumor – data of the MAHO/MAKEI-registry. Klin Pädiatr 2010; 222: 140-144
  • 5 Göbel U, Calaminus G, Schneider DT et al. Klinik, Symptomatik und Therapiestrategien bei Keimzelltumoren des Ovars. Der Gynäkologe 2004; 37: 806-814
  • 6 Haas RJ, Bramswig J, Göbel U et al. Malignant testicular tumors in children and adolescents: concept of the MAHO 82 cooperative therapeutic study of the Society for Pediatric Oncology. KlinPadiatr 1983; 195: 196-200
  • 7 Harms D, Zahn S, Göbel U et al. Pathology and molecular biology of teratomas in childhood and adolescence. Klin Pädiatr 2006; 218: 296-302
  • 8 Hersmus R, de Leeuw BH, Stoop H et al. A novel SRY missense mutation affecting nuclear import in a 46,XY female patient with bilateral gonadoblastoma. Eur J Hum Genet 2009; 17: 1642-1649
  • 9 Hersmus R, Stoop H, van de Geijn GJ et al. Prevalence of c-KIT Mutations in Gonadoblastoma and Dysgerminomas of Patients with Disorders of Sex Development (DSD) and Ovarian Dysgerminomas. PLoS One 2012; 7: e43952
  • 10 Isola J, DeVries S, Chu L et al. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. AmJPathol 1994; 145: 1301-1308
  • 11 Kersemaekers AM, Honecker F, Stoop H et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY. HumPathol 2005; 36: 512-521
  • 12 Looijenga LH, De LH, van OM et al. Stem Cell Factor Receptor (c-KIT) Codon 816 Mutations Predict Development of Bilateral Testicular Germ-Cell Tumors. Cancer Res 2003; 63: 7674-7678
  • 13 Mancilla EE, Poggi H, Repetto G et al. Y chromosome sequences in Turner’s syndrome: association with virilization and gonadoblastoma. JPediatr EndocrinolMetab 2003; 16: 1157-1163
  • 14 Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. NatRevCancer 2005; 5: 210-222
  • 15 Page DC. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development 1987; L – 101 (Suppl:151-5) 151-155
  • 16 Palmer RD, Barbosa-Morais NL, Gooding EL et al. Pediatric malignant germ cell tumors show characteristic transcriptome profiles. Cancer Res 2008; 68: 4239-4247
  • 17 Pleskacova J, Hersmus R, Oosterhuis JW et al. Tumor Risk in Disorders of Sex Development. Sex Dev 2010; 4: 259-269
  • 18 Rajpert-De ME, Hanstein R, Jorgensen N et al. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. HumReprod 2004; 19: 1338-1344
  • 19 Riopel MA, Spellerberg A, Griffin CA et al. Genetic analysis of ovarian germ cell tumors by comparative genomic hybridization. Cancer Res 1998; 58: 3105-3110
  • 20 Schneider DT, Calaminus G, Koch S et al. Epidemiologic analysis of 1 442 children and adolescents registered in the German germ cell tumor protocols. PediatrBlood Cancer 2004; 42: 169-175
  • 21 Schneider DT, Schuster AE, Fritsch MK et al. Genetic Analysis of Childhood Germ Cell Tumors with Comparative Genomic Hybridization. KlinPädiatr 2001; 213: 204-211
  • 22 Schneider DT, Zahn S, Sievers S et al. Molecular genetic analysis of central nervous system germ cell tumors with comparative genomic hybridization. ModPathol 2006; 19: 864-873
  • 23 Shahsiah R, Jahanbin B, Rabiei R et al. Malignant ovarian germ cell tumours in gonadal Y chromosome mosaicism. J Clin Pathol 2011; 64: 973-976
  • 24 Skakkebaek NE, Holm M, Hoei-Hansen C et al. Association between testicular dysgenesis syndrome (TDS) and testicular neoplasia: evidence from 20 adult patients with signs of maldevelopment of the testis. APMIS 2003; 111: 1-9
  • 25 Yilmaz B, Gungor T, Bayramoglu H et al. Bilateral ovarian gonadoblastoma with coexisting dysgerminoma in a girl with 46,XX karyotype. J Obstet Gynaecol Res 2010; 36: 697-700
  • 26 Zahn S, Sievers S, Alemazkour K et al. Imbalances of Chromosome 1p in Pediatric and Adult Germ Cell Tumors are Caused by True Allelic Loss:a Combined Comparative Genomic Hybridization and Microsatellite Analysis. Genes ChromosomesCancer 2006; 45: 995-1006
  • 27 Zhu J, Liu X, Jin H et al. Swyer syndrome, 46,XY gonadal dysgenesis, a sex reversal disorder with dysgerminoma: a case report and literature review. Clin Exp Obstet Gynecol 2011; 38: 414-418